Errata

35660A Dynamic Signal Analyzer HP-IB

Title & Document Type: o0 amming Reference

Manual Part Number: 35660-90025

Revision Date: July 1, 1988

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products ad chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

WEe' ve added this manua to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Y ou will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

Christina Samii
35660A Dynamic Signal Analyzer HP-IB
Programming Reference

Christina Samii

Christina Samii
 35660-90025

Christina Samii
 July 1, 1988

- =
Paf

Agitant Labs Libraty
Paic ARG

HP 35660A Dynamic Signal Analyzer

HP-IB Programming Reference

Manuai Part No. 35660-90025
Microfiche Part No. 35660-90225

© Copyright Hewlett-Packard Company 1988
8600 Soper Hilt Road
Everett, Washington 98205-12938 U.S.A.

Printed: July 1988

HEWLETT
(6ﬁ] PACKARD
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of

this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright.

All rights are reserved. No part of this document may be photocopied, reproduced or
translated to another language without the prior written consent of Hewlett-Packard
Company. This information contained in this document is subject to change

without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only.

© Copyright 1987, 1988 Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subdivision {(c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94303

Table of Contents

introductionto HP-IB 1-1
Notice to Experienced HP-IB Programmers 1-1
Manual Overview 1-2
HP-B Overviewcoiieinnn 1-3
Sending Commands Overthe HP-B 1-4
The IEEE 488.1 and 488.2 Standards 1-4
HPABSetup e e 1.5

Configuring the HP-IB System 1-5
Quick Verification 1-8
Verification Program 1410

Behavior in an HP-IB System 2-1
HP-IB interface Capabilities 21
Controller Capabilities 2-2
Bus Managerment Commands vs.

Device Commands 2-2
Response to Bus Management Commands 2-3

DeviceClear (DCL) 23
GoTolocal (GTL) 23

Group Execute Trigger (GET) 2-3
Interface Clear (IFCY 2.3
Local Lockout (LLOY 2-4
Parallel Palt, 2-4
Remote Enable (REN) 2-4
Selected Device Clear (SDC) 2-4
SeriglPoll 2-5
Take Control Talker (TCT) 25
Message Exchange 2-6
Buffersand Queues 26
CommandParser 2.7
Query Response Generation 2-8
Synchronization oo o 2-9
Overiapped Commands 2-9
Delayed Result Commands 2-11
PassingControl 2-12

Programming with
Hierarchical Commands 3-1
Imtroduction e 3-1
TheCommand Tree vy 3-2
Sending Multiple Commands 3-3
Command Abbreviation 34
Message Syntaxo 35
ConVentioNS ... e e e 35
Common Definitions 35
Special Syntactic Elements 35
Program Message Syntax 3-6
Response Message Symtax 3-10
TransferringData 41
DataEncoding 4-1
ASCHl Encoding 4-1
Binary Encoding 4.2
DataFormatsot 4-5
Cormventions 4-5
Common Definitions 4-5
Dacimal NumericData 4.5
CharacterData 4-7
StringData 4-7
ExpressionData 4-8
BlockData 4.8
FilleFormats, 4-10
BasicFileStructures- 4-10
Special FieldsinaRecord 412
The Order of RecordsinaFile 413
ExamplaFite 4-14
Corntroller AccesstoFiles 4-15
Record Descriptions 416
Using the HP 35660A°s
Status Registers 5-1
Introduction, e 5-1

Table of Contents (Continued)

User Status RegisterSet
Programming Examples
Introduction........... oo o
Command Reference
infroduction o
Conventions
Common Definitions
CommonCommands
*CAL? query
*LS .. command
*ESE[?]command/query
*ESR? query
MDNT query
*OPCI?) ... command/query
*OPT? o query
*CB ... command
*PSCI?E ... command/query
*RST .. command
*SRE[?] command/query
*STB? . e query
*TRG ... o command
MTET? query
WAL command
Device-Specific Commands
ARM .o subsystem
AVERage subsystem
CAlibration subsystem
CONFigure subsystem
DiSPlay subsystem
FREQuency subsystem
GPB subsystem
INITialize subsystem
INPUt ... subsystem
LiIMit o subsystem

Types of RegistersinaSet
Information Flow in a Register Set .,
SpecialCases 0.,

The HP 35660A's RegisterSets
Status Byte RegisterSet
Event Status RegisterSet
Device Status RegisterSet

Data Integrity Register Set

7.2
7-2
.73
7-3
7-4
75

MARKer subsystem 791
MMEMory subsystem 7-131
PLOTter subsystem 7-163
PRINter subsystem 7-173
SCReen subsystem 7-175
SERVice subsystem 7-181
SOURce subsystemn 7-183
STATUSccuivn.. subsystem 7-187
SWEep subsystem 7-203
SySTem.................... subsystem 7-205
TEST oo subsystem 7-221
TRACe subsystem 7-223
TRIGger ... subsystem 7-245
USER ool subsystem 7-251
WINDow subsysterm 7-257
SelectingUnits A-1
Crogs-Reference from Front-Panel Keys
toHP-IBCommands B-1
Introduction oL B-1
Measurement Group, B-2
AVBIAgE B-2
Frequencycouiiin.nn B-2
Input ... o B-2
MeasType B-3
PausefCont B-3
SOUMCE . ..o e B-3
Start ... e B-3
THOGer ... B-3
Window oL B-4
DisplayGroup i B-5
ActiveTrace B-5
Format B-5
Math B-5
MeasData B-6
Trace Type B-7
Scale B-7
MarkerGroup, 8-8
Marker B-8
MarkerFetnB-8
SystemGroup B-11
Relp ... B-11
locallHP-IB B-11
Plot/Print B-11

Table of Contents (continued)

Preset B-13 CommandEmorsc..covt .. D-2
Save ... e B-13 O0CMDERR D-2
SpelFetn ... B-16 SIOTINVALUD CHAR . D-2
Recall B-19 A10BADCMD L. D-2
UserDefine B-21 SI20BADPARM ... D-3
NUMBHC ENtry GIoUD .« - oo B.00 423 OVERFLOW _....................... D-3
Marker Value 8.02 S29PARMMISSING .. D-3
142 TOOMANYPARMS D-3
HP-IB CommandList C1 ExecutionErrors D-4
200 EXECUTEERRCR D-4
Gommon COMMANGsooov c 203 TRIGGERERROR D-4
Device-Specific Commands G2 211 SETTINGS CONFLICT D5
ARM c-2 2120UTOFRANGE D6
AVERage c-2 2220UTOFMEMORY D-6
CALibration c-2 -240 MASS STORAGEERROR D7
CONFigure c-2 -241 HARDWARE MISSING D-7
DISPlay[A[:B]1]2] C-3 242NOMEDIA D-7
FREQuency C-4 243BADMEDIA L D8
GPIB ... C-4 244MEDIAFULL D-8
INITialize C-4 2ASDIRFULL o D-8
INPUt[H[2] . C-5 246 FILE NAMENOTFOUND D-8
LIMIR[1-8] ... C-5 247 DUPLICATENAME D-8
MARKer[A[BIT[2] ol 248 MEDIAPROTECTED D-8
MMEMOry ..o c8 imernalErrors D9
cngar S SOOINTERNALERROR
SCReen c9 302 SYSTEMERROR D-9
SERViCeo c-10 SO3TIMEOUTERROR ..., D-g
SOURce C-10 S1OMEMORYERROR D9
STATwS . Gt S13CALDATALOSS D-9
SWEED . oo Co11 330 SELFTESTERROR D-9
SYSTem ..o C12 350 TOOMANYERRORS D-9
TEST ..o C-13 Query ErFOIS D-10
TRACe[AIBITIZ] i C-14 400 QUERYERROR D-10
TRIGger C-15 410 INTERRUPTED D-10
USER C-15 420 UNTERMINATED 0-10
WINDow[1]2] Cc-15 422 ADDRTALKNO QUTPUT D-10
430DEADLOCK. D-10
ErrorMessages D-1
Introduction B-1 Index
Sales & Support Offices

Chapter 1
Introduction to HP-IB

Notice to Experienced HP-IB Programmers

Two things that have been true about HP-1B programming for many past instruments are
not true for HP-IB programming of the HP 35660A.

In past instruments, a cormmand typically consisted of a single mnemonic. An HP 35660A
command typically consists of a series of mnemonics that are selected from a command
hierarchy. The hierarchy organizes commands into groups that access related analyzer
functions. These multi-mnemonic commands are less cryptic than single-mnemonic
commands and help to make your programs more self-documenting. Chapter 3, describes
the command hierarchy.

It has also been typical for past instruments to have an HP-IB command for each front-
panel hardkey and softkey. This is not true for the HP 35660A. The analyzer does give you
HP-IB access to all front-panel functions, but there is not a one-to-one correspondence
between commands and keys. This results from the fact that the HP-IB command hierarchy
is organized differently than the front-panel key hierarchy. Appendix B provides a
cross-reference for selecting an HP-IB command that is equivalent to a series of front-panel
key presses. A special front-panel feature called Mnemonic Echo also provides
cross-referencing. Mnemonic Echo is deseribed in Appendix B.

1-1

Introduction to HP-IB

Manual Overview

This manual is organized into five major parts:

12

1. Programming Fundamentals — This part of the manual contains five chapters,
each of which discusses some aspect of programming the HP 35660A via
the HP-IB:

Chapter 1 introduces you to HP-IB concepts and tells you how to configure
the HP 35660A in an HP-IB system.

Chapter 2 explains how the analyzer interacts with the controller and
other devices on the HP-1B.

Chapter 3 explains the HP 35660A’s command hierarchy.

Chapter 4 explains how data is transferred between the analyzer and
a controller. It also deseribes the structure of files you can save from
the analyzer.

Chapter 5 describes the analyzer’s register structure and tells you how the
analyzer uses registers to generate service requests.

Programming Examples — This part (Chapter 6) contains commented

programming examples.

3. Command Reference — This part (Chapter 7) contains a detailed description of
each HP-1B command. The command descriptions are organized alphabetically.

Appendices — This part of the manual contains four appendices:

Appendix A explains how to select the vertical units you can send with
certain commands.

Appendix B cross-references front-panel keys to equivalent
HP-IB commands.

Appendix C lists all of the HP-IB commands in alphabetical order.

Appendix D lists the analyzer’s error messages.

Index — This part of the manual references the page numbers where different

subjects are discussed. It can be especially useful for determining which
command you should use to access a particular analyzer function.

Introduction to HP-1B

HP-IB Overview

HP-IB, the Hewlett-Packard Interface Bus, is a high performance bus that allows you to
build integrated test systems from individual instruments and computers. The bus and its
associated interface operations are defined by the IEEE 488.1 standard.

HP-IB cables provide the physical link between devices on the bus. There are eight data
lines on each cable that are used to send data from one device to another. Devices that can
be addressed to send data over thegse lines are called “‘talkers,”” and those that can be
addressed to receive data are called “listeners.” There are also five control lines on each
cable that are used to manage traffic on the data lines and to control other interface
operations. Devices that can use these control lines to specify the talker and listener in a
data exchange are called “controllers.”

When an HP-IB system contains more than one device with controller capabilities, only

one of the devices is allowed to control data exchanges at any given time. The device
currently controlling data exchanges is called the “active controller.” Also, only one of

the controller-capable devices can be designated as the “system controller.” The system
controller is the one device that can take control of the bus even if it is not the active
controller. The HP 35660A can act as a talker, listener, active controller, or system controller
at different times.

HP-IB addresses provide a way to identify devices on the bus. For example, the active
controller uses HP-IB addresses to specify which device talks and which device listens during
a data exchange. This means that each device’s address must be unique. You set a device’s
address on the device itself, usually using a rear-panel switch or a front-pane! key sequence.

1-3

Introduction to HP-IB

Sending Commands Over the HP-IB

Commands are sent over the HP-IB via a controller’s language system, such as BASIC or
Pascal. As a result, you will need to determine which keywords your controller’s language
system uses to send HP-IB commands. When looking for keywords, keep in mind that there
are actually two different kinds of HP-IB commands:

* Bus management commands, which control the HP-IB interface

* Device commands, which control analyzer functions

Language systems usually deal differently with these two kinds of HP-IB commands. For
example, HP BASIC 5.0 uses a unique keyword to send each bus management command, but
always uses the keyword OUTPUT to send device commands. For more information on the
differences between bus management commands and device commands, see Chapter 2,
“Behavior in an HP-IB System.”

The following example shows how to send a typical device command:
OUTPUT 711;"AVERAGE:COUNT 5"

This sends the command within the quotes (AVERAGE:COUNT 5) to the HP-IB device at
address 711. If the device is an HP 35660A, the command instructs the analyzer to set the
number of averages to 5.

NOTE All examples in this manual are written for HP BASIC 5.0 running on an
HP Series 200 computer.

The IEEE 488.1 and 488.2 Standards

The HP 35660A conforms to both the IEEE 488.1 standard and the IEEE 488.2 standard.
The IEEE 488.1 standard defines the mechanical, electrical, and functional aspects of the
original 488 bus. The IEEE 488.2 standard defines data encoding, data formats, bus

communiecation protocols, and a set of commonly needed commands for instruments that use
the 488 bus.

1.4

introduction to HP-IB

HP-IB Setup

This section contains a procedure for configuring the HP 35660A and an external controller
in a simple HP-IB system. Although an HP Series 200 computer is the controller used in the
system, other computers that support an HP-IB interface can also be used. If you are using
one of those other computers, the configuration procedure can only be used as a general
guide. You should consult your computer’s documentation for more complete information.

This section also contains a procedure for verifying that commands can be sent over the
HP-IB. HP BASIC is used for the verification procedure’s test program. If your computer
uses some other language, the keywords and syntax for the test program may be different.
If this is the case, you will need to write a similar program using your language’s keywords
and syntax.

Configuring the HP-IB System

Equipment and Software

HP 35660A Dynamic Signal Analyzer
HP 9836 computer

HP 10833A, B, C, or D HP-IB Cable
HP BASIC5.0

Procedure

1. Turn off the HP 35660A and the HP 9836, then connect them with the HP-IB
cable as shown in Figure 1-1.

Figure 1-1. HP-IB Connections

1-5

Intreduction to HP-IB

2. Turn on the HP 9836. If necessary, load HP BASIC 5.0 following the
instructions in the computer’s operating manual. Note that the following
language extensions must be installed for the verification program to work:

» CRTA
« HPIB
» 10

+ EDIT

Programs that are more complex than the verification program will probably
require more language extensions.

3. Turn on the HP 35660A. When the softkey labels appear, press the
Local/HP-IB hardkey. (see Figure 1-2)

Softkeys
——— Softkey Labels\ i

:-:' 3o wLomew =) P N B ELC)
- LE s s mae
| =S oona g4n

n , D OBHER..

Sl 5 OD0DE ooas

Power Switch T) AOCE BEESS h:g::’::;’-'a

Figure 1-2. HP 35660A Front Panel

4. Verify that the analyzer’s address is set to 11. The current address setting is
displayed in the HpibAddr field (see Figure 1-3). You can change the analyzer’s
address by pressing the ANALYZER ADDRESS softkey, then using the numeric
keypad and the ENTER softkey tc enter a new value. However, the

instructions in the verification procedure assume that the analyzer address is
set to 11,

1-6

Introduction to HP-1B

i PlotAddr: & ProtRddr: 1 HRoRl
. Discinit: 1 Discynl: a !
[i Heas
e
Anal ' O t M terker X1 5I.2 kHz ¥: -178. #42 dBUrms CONTRELLR
nalyzer's Curren Ly kAL ; o L 28 LA
dBYrMS : AEDRESSEL]
HP-1B Address : : T U S B .. S

i PERIPHERL
© RDDRESSED
?-1E

UTILITIES

Stop: 1B2.4 xkz USER SR

-3t b Y
Start: @ Hz
Spectrum Chan L

Figure 1-3. HP 35660A Screen After Pressing Local/HP-IB

5. Verify that the analyzer is set to the addressable-only mode. The softkey labels
that appear when you press the Local/HP-IB hardkey include SYSTEM
CONTROLLR and ADDRESSBIL ONLY. Only one of these two softkeys can be
selected at a time, and the one that is selected will have a box around it. If
ADDRESSBL ONLY is not selected, then press that softkey.

NOTE in any HP-IB system there can be more than one device with controller capabilities.
But at any given time, only one device on the bus can be designated as the
system controlier.

Intraduction to HP-IB

Quick Verification

Having just completed all the steps in the preceding section, you are ready to verify that
commands can be sent over the HP-IB. In this quick verification, you are going to enter an
HP BASIC keyword that should place the HP 35660A under remote control.

Procedure

1. Press the Local/HP-1B hardkey, then the HP-IB UTILITIES softkey. Another set
of softkey labels is displayed. In the first label, STATUS ON/OFE OFF should
be highlighted.

2. Press the STATUS ON/OFF softkey so that ON is highlighted. This will display
the four HP-IB status indicators: Rmt, Tlk, Ltn, and Srq. (see Figure 1-4)

HP-IB Status Indicators

. STRTUS
HpibRAddr: 19 PlotAddr: 9 PrntRder: 1
biscRadr: 2 Disclnit: 1 Discwol: 8 Wil 0FF

R WEREATE)
FREE FIIH Two, b ey HMMEMONTE
oFF |

0 Marker % S1.2 kHz t: -127.375 dBvrmy

-1 ; :
: : ©OiMNEMON!C

aevrns FR TP SO SOV VSO AU SR ECHD
: HP-1B
. stROLL

an
Ay e

o P g o

Start: Stop: 182.4 kHx RETURN
ipectrum Chan :

Figure 1-4. HP 35660A Screen with HP-IB Status Indicators

3. Type the following on the computer:
REMOTE 711

Then press the computer’s ENTER key. Now the HP 35660A’s Rmt and Ltn
indicators should both be highlighted. This tells you that the analyzer is under
remote control of the computer. To return the analyzer to front-panel control,
press the Local/HP-IB hardkey or enter the following on the computer:

LOCAL 711

1-8

Intreduction to HP-IB

Troubleshooting
If the Rmt indicator doesn’t perform as expected, check the following things:

+ Be sure that your HP-1B cable connections are secure and that the cable is free
of defects.

» Verify that the analyzer is in addressable-only mode and that its address is set
to 11.

* Be sure you are using the required equipment and software.

* Be sure you have loaded all the required language extensions into the computer.
(For a list of loaded extensions, enter the following into the computer: LIST BIN)

If everything seems to be in order, but the Rmt indicator still doesn’t perform as expected,
contact your local HP Sales/Service office,

19

introduction to HP-IB

Verification Program

The quick verification procedure confirmed that the computer could talk to the analyzer.
However, you must write a short program to confirm that the analyzer can talk to the
computer. If you enter the program correctly, the computer displays the following statement
when you run the program:

ACTUAL FREQUENCY SPAN IS: 25600 HZ

NOTE The following procedure assumes that you have completed all the steps in
“Configuring the HP-IB System™ using all the required equipment and software.

Procedure
1. Enter the following program:

10 PRINTER IS 1

20 Dsa=711

30 ABORT 7

40 CLEAR Dsa

50 QUTPUT Dsa;"*RST"

60 OUTPUT Dsa;"FREQ:SPAN 20KHZ"

70 OUTPUT Dsa;"FREQ:SPAN?*

80 ENTER DsaA

a0 PRINT "ACTUAL FREQUENCY SPAN IS:";A;*"HZ"
100 END

See your computer and software documentation if you need help entering
the program.

2. Press the computer’s RUN key. The program tells the analyzer to preset.

It then tells the analyzer to select the nearest frequency span that is greater
than or equal to 20 kHz. Finally, the program asks the analyzer to return
the selected frequency span and has the computer display the returned value
as follows:

ACTUAL FREQUENCY SPAN IS: 25600 HZ

Troubleshooting

If the program doesn’t run correctly, be sure you have entered the program exactly as listed.
Then refer to “Quick Verification” for additional troubleshooting hints.

1-10

Chapter 2
Behavior in an HP-IB System

HP-IB Interface Capabilities

The HP 35660A has the following interface capabilities, as defined by the
IEEE 488.1 standard:

SH1
AH1
T6

TEO
L4

LEO
SR1
RL1
PPO
DC1

complete Source handshake capability

complete Acceptor handshake capability

basic Talker, Serial Poll, no Talk Only, unaddress if MLA
no Extended Talker capability

basic Listener, no Listen Only, unaddress if MTA
no Extended Listener capability

complete Service Request capability

complete Remote/Local capability

no Parallel Poll capability

complete Device Clear capability

complete Device Trigger capability

System Controller capability

send IFC and take charge Controller capability
send REN Controller capability

send IF messages, receive control, pass control
three-state drivers

2-1

Behavior in an HP-IB System

Controller Capabilities

The HP 35660A can either be configured as an HP-IB system controller or as an
addressable-only HP-IB device. This is done by selecting either the SYSTEM CONTROLLR
or ADDRESSBL ONLY softkey on the analyzer’s front panel. (These keys are presented
when you press the Local/HP-IB hardkey.)

Normally, the HP 35660A is not configured as the system controller unless it is the only
controller on the bus. Such a setup would be likely if you just wanted to control printers,
plotters, or external disc drives with the analyzer. It might also be the case if you were using
HP Instrument BASIC (HP 35680A) to control other test equipment.

When the analyzer is being used with another controller on the bus, it is normally configured

as an addressable-only HP-1B device. In this configuration, the analyzer can function as the
active controller (when it is passed control), or as a talker or listener.

Bus Management Commands vs. Device Commands

The HP-IB contains an attention (ATN) line that determines when the interface is in
the command mode or the data mode. When the interface is in the command mode
(ATN TRUE), a controller can send bus management commands over the bus. Bus
management commands are used to:

* Specify which devices on the interface can talk (send data) and which can listen
{receive data)

* Instruct devices on the bus, either individually or collectively, to perform a
particular interface operation

The analyzer’s responses to bus management commands are described in the next section.

When the interface is in the data mode, device commands and data can be sent over the bus.
Device commands are sent by the controller, but data can be sent either by the controller or a
talker. The HP 35660A responds to two different kinds of device commands:

« Common commands, which access device functions required by the
IEEE 488.2 standard.

* Device-specific commands, which access the bulk of the analyzer’s functions.

The analyzer’s responses to device commands are deseribed in Chapter 7
“Command Reference.”

2-2

Behavior in an HP-IB System

Response to Bus Management Commands

This section tells you how the HP 35660A responds to the HP-IB bus management
commands. The commands themselves are defined by the IEEE 488.1 standard. Refer to
the documentation for your controller’s language system to determine how to send

these commands.

Device Clear (DCL)

This command causes the analyzer to:

» Clear its input buffer and output queue
» Reset its command parser so it is ready to receive a new program message

¢ Cancel any pending *OPC command or query
The command does not affect:

* Front-panel operation
* Any analyzer operations in progress (other than those already mentioned}

» Any of the analyzer’s settings or registers (although clearing the output queue
may indirectly affect the Status Byte's MAV bit)

Go To Local (GTL)

This command returns the analyzer to local (front-panel) control. All keys on the analyzer’s
front-panel are enabled.

Group Execute Trigger (GET)

This command triggers the analyzer (causes it to start collecting a time record) if the
following two things are true:

¢ The trigger source must be the HP-IB (TRIG:SOUR BUS).

¢ The analyzer must be ready to trigger. (Bit 2 of the Device Status condition
register must be set.)

GET hasg the same effect as the *TRG and TRIG:IMM program messages.

Interface Clear (IFC)

This command causes the analyzer to halt all bus activity. It discontinues any input or
output, although the input buffer and output-queue are not cleared. If the analyzer is
designated as the active controller when this command is received, it relinquishes control of
the bus to the system controller. If the analyzer is enabled to respond to a Serial Poll it
becomes Serial Poll disabled.

23

Behavior in an HP-IB System

Local Lockout (LLLO)

This command causes the analyzer to enter the local lockout mode, regardless of whether it
is in the local or remote mode. The analyzer only leaves the local lockout mode when the
HP-IB’s Remote Enable (REN) line is set FALSE.

Local lockout ensures that the analyzer’s Local/HP-IB key is disabled when the analyzer is in
the remote mode. When the key is enabled, it allows a front-panel operator to return the
analyzer to local mode, thus enabling all other front-panel keys. However, when the key is
disabled, it does not allow the operator to return the analyzer to local mode.

Parallel Poll
The HP 35660A ignores all of the following parallel poll commands:

* Parallel Poll Configure (PPC)

* Parallel Poll Unconfigure (PPU)
» Parallel Poll Enable (PPE)

» Parallel Poll Disable (PPD)

Remote Enable (REN)

REN is a single line on the HP-IB. When it is set TRUE, the analyzer will enter the remote
mode when addressed to listen. It will remain in remote mode until it receives the Go to
Local (GTL) command or until the REN line is set FALSE.

When the analyzer is in remote mode and local lockout mode, all front-panel keys are

disabled. When the analyzer is in remote mode but not in local lockout mode, all front-panel
keys are disabled except for the Local/HP-IB key. See Local Lockout for more information.

Selected Device Clear (SDC)

The analyzer responds to this command in the same way that it responds to the Device Clear
command. See the latter for details.

24

Behavior in an HP-B System

Serial Poll

The analyzer responds to both of the serial poll commands. The Serial Poll Enable (SPE)
command causes the analyzer to enter the serial poll mode. While the analyzer is in this
mode, it sends the contents of its Status Byte register to the controller when addressed
to talk,

When the Status Byte is returned in response to a serial poll, bit 6 acts as the Request
Service (RQS) bit. If the bit is set, it will be cleared after the Status Byte is returned.

The Serial Poll Disable (SPD) command causes the analyzer to leave the serial poll mode.

Take Control Talker (TCT)

If the analyzer is addressed to talk, this command causes it to take control of the HP-IB.

It becomes the active controller on the bus. The analyzer automatically passes control back
when it completes the operation that required it to take control. Control is passed back to
the address specified by the *PCB program message (which should be sent prior to

passing control).

If the analyzer does not require control when this command is received, it immediately
passes control back.

2-5

Behavior in an HP-IB System

Message Exchange

The analyzer communicates with the controller and other devices on the HP-IB via program
messages and response messages. Program messages are used to send commands, queries,
and data to the analyzer. Response messages are used to return data from the analyzer.
The syntax for both kinds of messages is discussed in Chapter 3.

There are two important things to remember about the message exchanges between the
analyzer and other devices on the bus:

» The analyzer only talks after it receives a terminated query. {(Query termination
is discussed in “Query Response Generation,” later in this chapter.

» Once it receives a terminated query, the analyzer expects to talk before it is told
to do something else.

Buffers and Queues

Buffers and queues enhance the exchange of messages between the HP 35660A and other
devices on the bus. The analyzer contains:

¢ An input buffer
* An error queue

* An output queue

Input Buffer

The input buffer temporarily stores all of the following until they are read by the analyzer’s
command parser:

* Device commands and queries
¢ Group Execute Trigger (a bus management command)
¢ The HP-IB END message (EOI asserted while the last data byte is on the bus)

The input buffer makes it possible for a controller to send multiple program messages to the
analyzer without regard to the amount of time required to parse and execute those messages.
The buffer holds up to 2566 bytes. It is cleared when you do one of the following:

¢ Turn the analyzer on
* Send Device Clear (DCL) or Selected Device Clear (SDC)
* Press the Local/HP-IB hardkey

26

Behavior in an HP-IB System

Error Queue

The error queue temporarily stores up to ten error messages. Each time the analyzer detects
an error, it places a message in the queue. When you send the SYST:ERR query, one message
is moved from the error queue to the output queue so it can be read by the controller. Error
messages are delivered to the output queue in the order they were received. The error queue
is cleared when you do one of the following:

¢ Turn the analyzer on
* Send the *CLS command

Output Queue

The output queue temporarily stores a single response message until it is read by a
controller. The analyzer’s output queue holds up to 8192 bytes. It is cleared when you do
one of the following:

* Turn the analyzer on
¢ Send Device Clear (DCL) or Selected Device Clear (SDC)
* Press the Local/HP-IB hardkey

Command Parser

The command parser reads program messages from the input buffer in the order they were
received from the bus. It analyzes the syntactic elements of the messages to determine what
actions the analyzer should take.

One of the parser’s most important functions is to determine a program message’s position
in the analyzer’s command tree. (For more information on the command tree, see
Chapter 3.) When the command parser is reset, the next syntactic element it receives is
expected to arise from the base of the analyzer’s command tree. The parser is reset

when you do one of the following:

¢ Turn the analyzer on
* Send Device Clear (DCL) or Selected Device Clear (SDC)
* Press the Local/HP-IB hardkey

* Follow a semicolon with a colon in a program message (For more information,
see “Sending Multiple Commands™ in Chapter 3.)

2-7

Behavior in an HP-IB System

Query Response Generation

When the HP 35660A parses a query, the response to that query is placed in the analyzer’s
output queue, You should read a query response immediately after sending the query. This
ensures that the response will not be cleared before it is read. The response will be cleared
before you read it if any of the following message exchange conditions occur:

s Unterminated condition — This condition results when you neglect to properly
terminate the query (with an ASCII line feed character or the HP-IB END
message) before you read the response.

¢ Interrupted condition — This condition results when you send a second program
message before reading the response to the first.

* Buffer deadlock — This condition results when you send a program message that:
a. Is longer than the input buffer and

b. Generates more response data than will fit in the output queue,

28

Behavicr in an HP-IB System

Synchronization

This section describes tools you can use to synchronize the analyzer and a controller. Proper
use of these tools ensures that the analyzer will be in a known state when you send a
particular command or query.

Overlapped Commands

Device commands can be divided into two broad classes:

» Sequential commands

* Overlapped commands

Most device commands that you send to the analyzer are processed sequentially. A
sequential command holds off the processing of any subsequent command until it has been
completely processed. However, some commands do not hold off the processing of
subsequent commands; they are referred to as overlapped commands.

Typically, overlapped commands take longer to process than sequential commands. For
example, the INIT:STAT STAR command is used to start a measurement. The command is
not considered to have been completely processed until the measurement is complete. This
can take a very long time if the measurement is averaging a large number of time records.

NOTE INIT:STAT STAR and INIT:STAT RUN are considered to be pending overlapped
commands whenever bit 7 of the Device Status condition register is settc 1. See
Chapter 5 for a description of that bit.

The analyzer uses an Operation Complete (OPC) flag to keep track of overlapped commands
that are still pending (not completed). The OPC flag is reset to 0 when an overlapped
command is pending. It is set to 1 when no overlapped commands are pending. You can not
read the OPC flag directly, but all of the following common commands cause the analyzer to
take some action based on the setting of the flag:

* *WAI — forces the analyzer to wait until the OPC flag is set o 1, but does not
affect the controller

* *OPC? — forces the controller to wait until the OPC flagis set to 1

* *OPC — informs the controller when the OPC flag is set to 1, but leaves it free
to perform other tasks until it receives a service request

Each command requires a different amount of overhead in your program. *WAI requires the
least overhead, *OPC requires the most.

29

Behavior in an HP-IB System

*WAI

This command holds off the processing of subsequent device commands until all overlapped

commands are completed (the OPC flag is set to 1). An example will demonstrate the effect
of the *WAI command.

Suppose you want to determine which frequency component of a signal contains the greatest
amount of energy. You might send the following series of commands:

QUTPUT 711;"INIT.STAT STAR" IStart the measurement,
OUTPUT 711;"MARK: X AMAX: GLGB" !Search for max energy.
OUTPUT 711;"MARK:X?" 'Which frequency?

The following timeline shows how the processing times of the three commands relate to
each other.

|
" INIT:STAT STAR '

{ |

' MARK:X:AMAX:GLOB
|
" MARK:X? |

As you can see, INIT:STAT STAR is an overlapped command because it does not hold off
the processing of MARK:X:AMAX:GLOB. You may also recall that MARK:X:AMAX:GLOB
is not considered complete until the measurement is complete. So in this example, the
marker searches for maximum energy before the measurement is complete. This may result

in the MARK:X query returning an incorrect value. To solve the problem, you ean insert a
*WAI command.

CUTPUT 711" INIT:STAT STAR" IStart the measurement.
CUTPUT 711;"*WAI" IWait until complete.
OUTPUT 711;"MARK:X: AMAX:GLOB" ISearch for max energy.
OUTPUT 711;"MARK:X?* Which frequency?

The timeline now looks like this.

!

" INIT.STAT STAR

L.
Y

" MARK:X:AMAX:GLOB
|
"MARK:X?

The *WATI command keeps the search from taking place until the measurement is completed.
The MARK:X query will return the correct value.

2-10

Behavior in an HP-IB System

*QPLC? and *OPC

If you send *OPC?, 1 is placed in the analyzer’s output queue when the OPC flag is set to 1.
This allows you to effectively pause the controller until all pending overlapped commands
are completed. Just design your program so that it must read the queue before it continues.

*OPC? does not hold off the processing of subsequent commands; it only informs you when
the OPC flag is set to 1. As a result, you should not send additional overlapped commands
to the analyzer between the time you send *OPC? and the time you read 1 from the

output queue,

If you send *OPC, bit 0 of the Event Status register is set to 1 when the OPC flag is set to 1.
This allows you to use the analyzer’s register structure to generate a service request when
all pending overlapped commands are completed. However, your program must also have
enabled bit 0 of the Event Status register and hit 5 of the Status Byte register. When you
synchronize the analyzer and controller in this manner, the controller is free to perform
some other task until the service request is generated.

*OPC does not hold off the processing of subsequent commands; it only informs you when
the OPC flag is set to 1. As a result, you should not send any commands to the analyzer
between the time you send *OPC and the time you receive a service request.

Delayed Result Commands

Delayed result commands change analyzer settings, but the changes they make do not
necessarily affect the current measurement. After sending one or more delayed result
commands you must always restart your measurement with the INIT:STAT STAR command.
This ensures that changes made by delayed result commands will affect the measurement.

Behavior in an HP-IB System

Passing Control

The analyzer requires temporary control of the HP-IB to complete some commands. (In the
description of each command, a field called “Pass control required”” indicates whether or
not the command requires control of the bus.) After sending such a command, the active
controller must pass control to the analyzer. When the analyzer completes the command,

it automatically passes control of the bus back to the controller. For control to be passed
back and forth smoothly, you must take steps to ensure that:

* The analyzer has the correct address of the controller so that it can pass control

back when the command is completed

* The controller will be informed when control has been passed back

A procedure for passing control follows:

1. Send the controller’s HP-IB address with the *PCB command.

2. Clear the analyzer’s status registers by sending the *CLS command.

3. Enable the analyzer’s status registers to generate a service request when the
Operation_Complete bit is set. (*ESE should be sent with a value of 1 and
*SRE should be sent with a value of 32.)

Enable the controller to respond to the service request.

5. Send the command that requires control of the bus followed by the
*OPC command.

6. Pass control to the analyzer and wait for the service request. The service
request indicates that the command has heen completed and control has been
passed back to the controller.

NOTE For this procedure to work properly, no overiapped commands should be pending

except the command that requires control of the bus. For more information on
overlapped commands, see "“‘Synchronization” in this chapter.

Chapter 6, “‘Programming Examples,” contains an example program that passes control to
the analyzer. In the example, control is passed so the analyzer can print the contents of

its screen.

2-12

Chapter 3
Programming with
Hierarchical Commands

Introduction

The HP 35660A’s device-specific HP-IB commands are derived from elements of a command
hierarchy (or tree). This chapter describes the command tree and discusses special
characteristics of the analyzer’s hierarchical commands. The chapter also describes the
general syntax for program messages, which are used to send these commands to the
analyzer. Finally, the chapter describes the general syntax for response messages, which the
analyzer uses to return data to other devices on the HP-IB.

3-1

Programming with Hierarchical Commands

The Command Tree

The HP 35660A’s command tree organizes related analyzer functions by grouping them
together on a common branch. Each branch is assigned a mnemonic to indicate the nature of
the related functions. For example, the analyzer’s marker functions are grouped together on
the MARKER branch of the command tree. The MARKER branch is only one of 25 major
branches on the tree. The other 24 branches organize the remaining device-specific
functions. The branches are also referred to as subsystems.

When many device functions are grouped together on a particular branch, additional
branching is used to organize device functions into groups that are even more closely related.
The MARKER branch serves as a good example because the analyzer provides many marker
functions. (See Appendix C for a complete list of commands that access marker functions.)
Band marker functions are grouped together on the BAND branch of the MARKER branch,
harmonic marker functions are grouped together on the HARMONIC branch, and so on.

The branching process continues until each analyzer function is assigned to its own branch.
For example, the function that turns the analyzer’s harmonic markers on and off is assigned
to the STATE branch of the HARMONIC branch of the MARKER branch.

The command that accesses a particular function is created by:

1. Coneatenating the mnemonics on a direct path from the base of the tree to the
function’s branch.
For example, MARKERHARMONICSTATE
> O O

2. Separating the mnemonics with colons to indicate branching points on the tree.
For example, MARKER:HARMONIC:STATE

3. Appending the value you want assigned to the function.
For example, MARKER:HARMONIC:STATE ON

In Appendix C, steps 1 and 2 have already been completed for each command. Also, a
particular command’s position in the command tree is indicated both by colons and by levels
of indentation. After completing step 3 for one of these commands, you can send it to the

analyzer via your controller’s language system. If you are using HP BASIC, for example,
you could send:

OUTPUT 711;,"MARKER:HARMONIC:STATE ON"

3-2

Programming with Hierarchical Commands

Sending Multiple Commands

You can send multiple commands within a single program message by separating the
commands with semicolons (;). For example, the following program message — sent within
an HP BASIC statement — would turn the harmonic markers on and set the number of
harmonic markers to 3:

OQUTPUT 711;"MARKER:HARMONIC:STATE ON;:MARKER:HARMONIC:COUNT 3

The analyzer’s command parser allows you to simplify the previous program message. This
is because one of the parser’s main functions is to keep track of a program message’s position
in the command tree. If you take advantage of this parser function, you can create the
equivalent, but simpler, program message:

OUTPUT 711;"MARKER:HARMONIC:STATE ON;COUNT 3"

In the first version of the program message, the semicolon that separates the two commands
is followed by a colon. Whenever this occurs, the command parser is reset to the base of the
command tree. As a result, the next command is only valid if it includes the entire
mnemonic path from the base of the tree.

In the second version of the program message, the semicolon that separates the two
commands is not followed by a colon. Whenever this occurs, the command parser assumes
that the mnemonics of the second command arise from the same branch of the tree as the
final mnemonic of the preceding command. STATE, the final mnemonic of the preceding
command, arises from the MARKER:HARMONIC branch. So COUNT, the first mnemonic
of the second command, is also assumed to arise from the MARKER:HARMONIC branch.

Here is a longer series of commands — again, sent within HP BASIC statements — that can
be combined into a single program message:

QUTPUT 711;"AVERAGE:STATE ON*

QUTPUT 711;"AVERAGE: TYPE PEAK"

QUTPUT 711;"AVERAGE:COUNT 100"

OUTPUT 711;"AVERAGE :DISPLAY:RATE 20
QUTPUT 711,"AVERAGE:DISPLAY:RATE:STATE ON*

The single program message would be:
OUTPUT 711;,"AVERAGE:STATE ON;TYPE PEAK;COUNT 100;DISPLAY:RATE 20;RATE:STATE ON*

3-3

Programming with Hierarchical Commands

Command Abbreviation

Each command mnemonic has a long form and a short form. The short forms of the
mnemonics allow you to send abbreviated commands. The mnemonics’ short forms are
created according to the following rules:

1.

If the long form of the mnemonic has less than four characters, the short form is the
same as the long form. For example, ARM remains ARM.

If the long form of the mnemonic has exactly four characters, the short form is the
same as the long form. For example, USER remains USER.

If the Iong form of mnemonic has more than four characters and the fourth character
is a consonant, the short form consists of the first four characters of the long form.
For example, AVERAGE becomes AVER.

If the long form of mnemonic has more than four characters and the fourth character
is a vowel, the short form consists of the first three characters of the long form. For
example, LIMIT becomes LIM.

NOTE The syntax descriptions in Chapter 7 use upper-case characters to identify the
short form of a particular mnemonic.

If the rules listed in this section are applied to the last program message in the preceding
section, the statement:

]

UTPUT 711,"AVERAGE:STATE ON;TYPE PEAK;COUNT 100;DISPLAY:RATE 20;RATE:STATE ON'

becomes:

3-4

OUTPUT 711;"AVER:STAT ON;TYPE PEAK;COUN 100;DISP:RATE 20;RATE:STAT ON*

Programming with Hierarchical Commands

Message Syntax

As mentioned in Chapter 2, the analyzer uses program messages and response messages to
communicate with other devices on the HP-IB. This section uses syntax diagrams to describe
the general syntax rules for both kinds of messages.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat
require a return path that goes from right to left. Any message that can be generated by
following a diagram from its entry point to its exit point, in the direction indicated by the
arrows, is valid.

Angle brackets < > enclose the names of syntactic items that need further definition. The
definition is included either in the text accompanying the diagram, in a subsequent diagram,
or in the next section, “Common Definitions.”

The symbol ::= means ““is defined as.”” When two items are separated by this symbol, the
second item can replace the first in any statement that contains the first item.

Common Definitions
The syntax diagrams have the following definitions in common:

e <LF> is the line feed character (ASCII decimal 10).

* <™ END> is assertion of the HP-IB END message while the last byte of data is on
the bus.

* <SP> is the space character (ASCII decimal 32).
* <WBSP> is one or more white space characters (ASCII decimal 0-9 and 11-32).
* <digit> is one character in the range 0-9 (ASCII decimal 48-57).

* <alpha> is one character of the alphabet. The character can be either upper-case
(ASCII decimal 65-90) or lower-case (ASCII deecimal 97-122) unless otherwise noted.

Special Syntactic Elements

Several syntactic elements have special meanings. They are:

* (colon): — When a command or query contains a series of mnemonics, the
mnemonics are separated by colons. A colon immediately following a mnemonic
tells the command parser that the program message is proceeding to the next level
of the command tree. A colon immediately following a semicolon tells the
command parser that the program message is returning to the base of the
command tree. For more information, see “The Command Tree” and “Sending
Multiple Commands” at the beginning of this chapter.

3-5

Programming with Hierarchical Commands

(semicolon) ; — When a program message contains more than one command or
query, a semicolon is used to separate them from each other. For example, if you
want to autorange the analyzer’s inputs and then start a measurement using one
program message, the message would be:

INPUT:RANGE:AUTO ON;:INITIALIZE:STATE START

(comma), — A comma separates the data sent with a command or returned with a
response. For example, the SYSTEM:TIME command requires three values to set
the analyzer’s clock: one for hours, one for minutes, and one for seconds. A
message to set the clock to 8:45 AM would be:

SYSTEM:TIME 8,45,0

<WSP> — One or more white space characters are optional in many parts of a
program message. However, at least one is required to separate a command or
query from the data sent with that command or query. The previous example
contains a space between the command (SYSTEM:TIME) and the data sent with
the command (8,45,0).

<message terminator> — A message terminator is required at the end of a
program message or a response message. Program message terminators are
described in “Program Message Syntax.” Response terminators are described in
“Response Message Syntax.”

Program Message Syntax

The syntax for a terminated program message is:

“<program |<Dngrcarn messGage
O‘T—Wf 7®_ messoge- | i "<WSP> A . ferminatar>

<program message terminator>::=

3-6

Programming with Hierarchical Commands

<program message>:i=

I <program
message unit>

<program message unit>:=

N <command
messade unit>

I
‘:
<guery
message unit>

<command message unit>::=

Aot D Lo,

— S T T [— <EFG§]T'&1_ITI_ T !
I e B I A i

<query message unit>u=

<program =pragram i -
header= dato> | i

3-7

Programming with Hierarchical Commands

<program header>::=

<gimple
program header>

=campound

program header>
<Common
program headers>

<simple program header>::=

<program
mnemonic=

<compound program header>::=

<program
mnemonics>

<common program header>::=

<program
miemoric>

3-8

Programming with Hierarchical Commands

<program mnemonic>::=

——p <glpha>

<digit=

<program data>:=

g <NRf decimal ;
numeric data> ; <suffix data> }Tr-»
<characier .
dato>
<giring doia>
<expression |
dafa> A

<definife length J
block dafa=

<indefinite {ength
block dalo>

Y

i

t The definition of indefinite length block data includes termination with <LF>< ~END>,
This serves the dual function of terminating the data and terminating the program message.

Program data and response data are described in Chapter 4, “Transferring Data.”
<suffix data> is dependent on the command sent.

3-9

Programming with Hierarchical Commands

Response Message Syntax

The syntax for a terminated response message is:

. <response . <response message
| message> ferminator>

<response message terminator>:=

<response message>:.: =

<response
datax

<response
”*L header> l_"{ <P j
s —| S ———]

<response header> is the <program header> sent with the query that generated the
response. It is only returned as part of the <response message> if SYSTEM:HEADER is
ON. Also, all <alpha> characters in the <response header> will be upper-case, even if they

were lower-case in the <program header>.

3-10

Programming with Hierarchical Commands

<response data>:=

<NR1 decimal
numeric dato>

<NR2 decimal
"l numeric data> ¥

=NR3 decimal
numeric data>

v

| <characier

) datg=

<sgtring dofa>

<gxpression
data>
St

<definite length
R
_block dara™ |

)
e

P]
I Jl<indefinite length ' »
block dotos

T The definition of indefinite length block data includes termination with <LF><~END>.
This serves the dual function of terminating the data and terminating the response message.

Response data and program data are described in Chapter 4, “Transferring Data.”

3-114

Transferring Data

Chapter 4
Transferring Data

Data can be transferred between the analyzer and a controller via the HP-IB data lines,
DIO1 through DIO8. Such transfers occur in a byte-serial (one byte at a time), bit-parallel
(8 bits at a time) fashion. This chapter discusses:

* The different ways data bytes can be encoded
* The formats used to transfer different types of data
* The structure of HP 35660A files

Data Encoding

Two kinds of data encoding are used when data is transferred between the HP 35660A and
an HP-IB controller: ASCII encoding, and binary encoding. All device commands and
queries are sent over the HP-IB as a series of ASClI-encoded bytes. In most cases, the data
sent with a command or returned in response to a query is also ASCII-encoded. However,
when a large block of data is transferred, it can be either ASCIl-encoded or binary-encoded.

Each command that is used to transfer block data has an associated command that allows
you to select data encoding. The commands for selecting data encoding use the parameter
ASC to specify ASCII encoding. They use either BIN, FP32, or FP64 to specify binary
encoding. For example, SYST:SET transfers a block of data that defines the instrument
state. The command SYST:SET:FORM allows you to specify encoding for the data in the
block. Another command, TRAC:DATA, transfers a block of trace data. In this case, the
command TRAC:HEAD:AFOR allows you to specify encoding for the data in the block.

ASCI] Encoding

Most data that is transferred between the analyzer and an HP-IB controller is encoded using
the ASCII 7-bit code (defined by the ANSI X3.4-1977 standard). When an ASCII-encoded
byte is sent over the bus, bits 1 through 7 of the byte (bit 1 being the least significant bit)
correspond to the HP-IB data lines DIO1 through DIO7. DIOS is ignored. The formats used
for ASCII-encoded data are discussed in “Data Formats” later in this chapter,

41

Transferring Data

Binary Encoding

Binary encoding can only be used for block data. In addition, binary encoding can only be
used for the numeric fields in block data. For example, SYST:SET transfers a block of data
that defines the instrument state. Many of the fields in the block contain character data.
The character data is always ASCII-encoded, even when you have specified binary encoding.

Numeric fields in block data can contain either integers, fixed point numbers, or floating
point numbers. A binary-encoded integer format is used to represent integers when binary
encoding is specified. A binary floating point format is used to represent fixed and floating
point numbers when binary encoding is specified.

Binary-Encoded Integers

Binary-encoded integers can be one, two, or four bytes long. The most significant byte of two
and four byte integers is always sent over the HP-IB first. The order of the bits corresponds
to the order of the HP-IB data lines. The most significant bit corresponds to DIOS8 and the
least significant bit corresponds to DIO1. Data is right justified and in two’s complement
notation. The most significant bit is used as the sign bit.

For example, in a two-byte integer, 7 (decimal) would be encoded as:

byte 1 byte 2
1:)101876.54321L DIO[87654321I
! r]
00000000 00000111

Binary Floating Point Numbers

When binary encoding is specified, the 32-bit and 64-bit binary floating point formats defined
in the IKEE 754-1985 standard are used to represent both fixed and floating point decimal
numbers. Many controllers, and the languages that run on them, use these formats. Both
formats have three fields in common, but the length of the fields are different for each. The
fields and their bit lengths appear in the following table:

Table 4-1. Flelds in Binary Floating Point Numbers

Field Width of Field
32-bit format 84-bit format
sign (s) 1 bit 1 bit
exponent (e) 8 11
fraction (f) 23 52

4.2

Transferring Data

When the 32-bit format is used, the decimal value of the exponent field ranges from —126 to
+127, with a bias of +127. When the 64-bit format is used, the decimal value of the
exponent field ranges from —1022 to +1023, with a bias of +1023.

You can use the following formulas to determine the value (x) of a 32-bit binary floating point
number. (s, e, and f must be converted from binary to decimal before using the formulas.)

fe =255andf =0 then x is not a number

lfe =255andf=0 then x = —1%(e)

f0 < e < 255 thenx = —152°7) (1 + 1)
fe =0andf=0 then x = —152°""*%)(0 + 1)
lfe=0andf=0 thenx-——S(O)

32-bit binary floating point numbers are sent over the bus as follows:

DID| 87654321 |
I I

byte 1
byte 2

e
f
bytes 3and 4 f

- W
—h — (@
— —h @

e
f
f

—h—hm
—h —h @

e
f
f
You can use the following formulas to determine the value (x) of a 64-bit binary floating

point number. (Again, s, e, and f must be converted from binary to decimal before using
the formulas.)

lfe =2047 andf=0 then x is not a number

Ife = 2047 andf=0 then x = —15(«)

f0 < e < 2047 then x = —152°~ 19331 4 1)
fe=0andfs=0 thenx = —15(2°71%%)(0 + 1)
lfe =0andf=0 then x = —15(0)

64-bit binary floating point numbers are sent over the bus as follows:

DO 87654321 |
! |

byte 1 seeeeeece
byte 2 eeeef f tf
bytes 3 through 8 fifffffff

4.3

4-4

Transferring Data

Here is an example of a number encoded in the 32-bit binary floating point format:

byte 1

01000001
seeeceeee

Where:

binary

0
10000011
001

Wy

s
e
i

Theretfore:

X

((54)(1.125)
18

byte 2 byte 3
10010000 00000000
effffeff fEffEfes

decimal
= 0

= 131
= 125

1221311274 125)

byte 4

00000000
EffEFLLS

Transferring Data

Data Formats

The HP 35660A uses a number of different data formats to represent the different types of
data it uses. The formats are described in this section using syntax diagrams.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat
require a return path that goes from right to left. Any data you can generate by following a
diagram from its entry point to its exit point, in the direction indicated by the arrows,

is valid.

Angle brackets < > enclose the names of syntactic items that need further definition.
The definition is included either in the text accompanying the diagram, or in the next
section, “Common Definitions.”

Common Definitions

The syntax diagrams have the following definitions in common:

* < LF > ig the line feed character (ASCII decimal 10).

* < "~END > is assertion of the HP-IB END message while the last byte of data is on
the bus.

* < 3P > is the space character (ASCII decimal 32).

* < WSP > is one or more white space characters (ASCII decimal 0-9 and 11-32).
« < digit > is one character in the range 0-9 (ASCII decimal 48-57).

* < non-zero digit > is one character in the range 1-9 (ASCII decimal 49-57).

* < alpha > is one character of the alphabet. The character can be either upper-case
(ASCII decimal 65-90) or lower-case (ASCII decimal 97-122) unless otherwise noted.

Decimal Numeric Data
The analyzer returns three types of decimal numeric data in response to queries:

* Integers — returned using the NR1 format
» Fixed point numbers — returned using the NR2 format
* Floating point numbers — returned using the NR3 format

You can use a more flexible format, the NRf format, when sending any of the three decimal
numeric data types to the analyzer. All four formats are described in the following
syntax diagrams.

4.5

Transferring Data

NR1 format:

NR2 format:

I nd|gt I .

-

. N

() /

/ _—'\ /‘ki
- «d|gT) t I‘-{/_\) 2 <d\m> ——-—

JN j

K. - Y,

J

NR3 format:

T '
F—{-}-J
L.,_\C}_/
NRf format:

4-6

<digif>

=digit> |-

- <digit>

Transferring Data

Character Data

The format you use to send character data is:
Eﬁ%—(ﬂ <Q[ph0> Fl

i_ digit= r-ﬁj
The ** ’” in the circle is the underscore character (ASCII decimal 95),

The format used when the analyzer returns character data is the same as the format
used to send character data, with one exception — the analyzer never returns lower-case
alpha characters.

String Data

The format you use to send string data is:

~
ASCH char other 1
ifhan double- Quoter
l
'ASrH char other
i ‘hcﬂ G single-guofe

Note that you must use two double-quote characters (™) to represent one (") in a string that
is delimited by double-quote characters. You must use two single-quote characters () to
represent one () in a string that is delimited by single-quote characters.

The format used when the analyzer returns string data is the same as the format used to

send string data, with one exception — the analyzer never returns string data using the
single-quote path.

4.7

Transferring Data

Expression Data

The format you use to send expression data is:

T

: i 1
(<EXQression 4
i _elemeni> /

The the only command that uses expression data is USER:EXPR. The syntax description for
that command contains a list of acceptable < expression elements >.

The format used when the analyzer returns expression data is the same as the format used
to send expression data.

Block Data

The analyzer typically uses one of two block data formats to send or receive large amounts
of data:

* The definite length block format
* The indefinite length block format

The definite length format is used when binary encoding has been specified for the block.
The indefinite length format is usually used when ASCII encoding has been specified.
However, some commands that send block data simply use one of the decimal numeric data
formats (NR1-3 or NRf) when ASCII encoding has been specified. In these cases, the block is
sent as a series of NRx numbers separated by commas.

4.8

Transferring Data

Definite Length Block Data
The format you use to send definite length block data is:

—- ﬁj—wm =ncn-zera digits b !J-« <digit> ——---———---'- © ool Dyte —‘ -

The elements #, < non-zero digit >, and < digit > make up a header for the block data.
< non-zero digit > indicates how many times < digit > is repeated. The < digits > are
interpreted as a single decimal number, which indicates how many bytes of data follow in
the block. Here is an example:

| Block Header | Block Data [
t byte 1 byte 2 byte 3 byte 4 I byte 5 byte 6 byte 19 ’
2 1 5 < data_byte 1 > < data byte 2 > ... < data_byte 15>

< non-zero digit > is 2, which means that the following two bytes should be taken together
as a single deci&lal number. In this case, the number is 15. Tlge following 15 bytes are the
5t through 19™" bytes of the data transfer, but they are the 1°* through 15" bytes of the
data block.

Indefinite Length Block Data
The format you use to send indefinite length block data is:

—

w#—--@»-—- @_£ [data byte g <LF> ‘—.T <nEND> |
mnid S |

1 L.

The first two bytes of the data transfer, # and 0, make up a header for the block data.
The data itself does not begin until the third byte of the data transfer.

4-9

Transferring Data

File Formats

The HP 35660A can save and recall five different file types. They are:

* The math file
* The limit table file
= The data table file
¢ The instrument state file
* The trace file
This section describes each of the file types.

Basic File Structures

The following five figures show you the basic structure of the different file types. Each
file is made up of a file header followed by one or more records. The records are arranged
in a hierarchical fashion. The hierarchy can be thought of as a series of parent/child
relationships. Arrows in the figures point from a parent record to each of its child records.
The file header and all of the records are described in tables at the end of this chapter.

File Header
Math Record

' Expression Record i

L—> Expression Record ;
Expression Record
Expression Record
Expression Record i

T This record is optional.

Figure 4-1. Math File Structure

File Header
Limit Table Reference Record

»Limit Table Record

Figure 4-2. Limit Table File Structure

4-10

Transferring Data

File Header
Data Table Reference Record

Data Table Record

Figure 4-3. Data Table File Structure

File Header
Master State Record

——Measurement State Record

{ Channel State Record

Channel State Record

——=Display State Record

'l]\/Iath Record
Expression Record Z

L Expression Record |
Expression Record +
Expression Record
xpression Record

Trace State Record

[Trace State Record

—=System State Record

——Marker State Record

L{ Trace-dependent Marker Becord

Trace-dependent Marker Record
Limit Table Reference Record

Limit Table Record |
Limit Table Record |
Limit Table Record |
Limit Table Record I
Limit Table Record |
Limit Table Record ¥
Limit Table Record |
| Limit Table Record T
->{Data Table Reference Record

[Data Table Record 1
| Data Table Record

T This record is optional.

Figure 4-4. Instrument State File Structure

411

Transferring Data

File Header
Complete Result Record

Vector Record

L Measurement Header Record
Channel Header Record
Channel Header Record |
Display Header Record

1 This record is optional.

Figure 4-5. Trace File Structure

Special Fields in a Record

All records contain the following three special fields:

* Record Type
* Record Length
+ Total Record Reference Count

If a record is a parent record, it contains at least one additional special field called a
Record Reference.

Record Type

The Record Type field contains a number that uniquely identifies the type of data contained
in the record. For example, all records with a Record Type number of 100,794,368 contain
HP 35660A channel header data. The fields in any two such records are the same, but the
values in each record’s fields may be different. For example, one Channel Header record may
contain channel 1 header data, while another Channel Header record contains channel 2
header data.

Record Length

The Record Length field contains a number that specifies the length of the record. If the
record is ASCII-encoded, the length is specified as a number of lines. If the record is
binary-encoded, the length is specified as a number of bytes.

NOTE The length of a binary-encoded record is always a multiple of 128. If the number of
bytes required by a record’s fields is not divisible by 128, then the record is padded
with zeros to the nearest multiple of 128.

Total Record Reference Count

The Total Record Reference Count field contains a number that specifies how many child
records are referenced from the record. If the number is 0, then the record is not a parent
record. If the number is greater than 0, then the record is a parent record and will contain
at least one Record Reference field.

4-12

Transferring Data

Record Reference

All parent records contain Record Reference fields. It is these fields that link individual
records together to form a particular file type. A Record Reference forms the links by:

* Identifying the type of child record that follows the parent record

* Indicating how many times that child record is repeated in the file

The position of a Record Reference in a parent record determines the identity of the child
record. For example, line 4 of the Math Record (see Table 4-2) is used as a Record Reference
for Expression Records. The value assigned to a Record Reference determines how many
times the record is repeated in the file. Using the Math Record again, if the value of line 4 is
2, then two Expression Records will follow the Math Record.

ASCH | Binary Meaning of Data/ Dala Range/
index Iadex Data Type Units
jine 1 byte +:4 RECGRD TYPE long 393216 (CO0A0000 when
converted to hexadecimal}
2 58 RECORD LENGTH: ASCII or Binary long 14 lines or128 bytes
K| 912 TOTAL RECORD REFERENCE COUNT long 0:5
4 1316 RECORD REFERENCE: # of expression records to follow long 05
5 17:24 real part of constant K1 double --340.28E + 36:340.26E + 38
[} 2532 imaginary part of canstan K1 doubie —340.28E +36:340.28E+ 36

Table 4-2. Partial Math Record Description

The Order of Records in a File

Two rules determine the order of records in a file.
1. Child records always follow immediately after their parent records.

2. Ifthere are two or more Record References in a parent record, their order determines
the order of the child records.

An example will help to illustrate these rules. Suppose that the master record (Record
type M) of a file contains the following lines:

iine description value

RECORD TYPE

RECORD LENGTH

TOTAL RECORD REFERENCE COUNT
RECORD REFERENCE: Record type X
RECORD REFERENCE: Record type Y
RECORD REFERENCE: Record type Z

DN WD —
== h OO

The order of records in the file is:

Record 1 (type M)
Record 2 (type X)
Record 3 (type Y)

Record 4 (type Y)
Record 5 (type Z)

4-13

Transferring Data

Example File

The following illustration (Figure 4-6) shows the contents of an example Math file. The file

contains a File Header, 2a Math record, and two Expression records.

0

File
1282 Header
0
1
393216
6
393216 RECORD TYPE 1 Math
14 RECORD LENGTH record
2 TOTAL RECORD REFERENCE COUNT
2 RECORD REFERENCE: number of
25.2 Expression records to follow
16.3
i
0 14 lines
1
0 record data
1
0
1
0
¥
268435456 RECORD TYPE s Expression
5 RECORD LENGTH record 1
0 TOTAL RECORD REFERENCE COUNT
1 5 lines
IFFT(SPECT) E record data
A
268435456 RECORD TYPE 4+ Expression
5 RECORD LENGTH record 2
0 TOTAL RECORD REFERENCE COUNT
2 5 lines
SPEC1*K1 record data
|

4-14

Figure 4-6. Contents of an Example Math File

Transferring Data

Controller Access to Files

Two HP-IB commands give a controller direct access to the information available in
HP 35660A files. The commands are:

* SYST:-SET
*« TRAC:DATA:SET

SYST:SET provides direct access to the instrument state file structure. Figure 4-4 shows
the structure of transferred data with one exception — the file header is not used for direct
transfers between the analyzer and a controller. TRAC:DATA:SET provides direct access to
the trace file structure. Figure 4-5 shows the structure of transferred data — again, with
the exception that the file header is not used for direct transfers between the analyzer and
a controller.

4-15

Transferring Data

Record Descriptions

The following tables describe the individual records from which the analyzer’s five file types
are built. Each table includes:

* A description of the individual fields in the record

* The acceptable range of values for data in the field
* A binary and an ASCII index for each field

* An indication of the type of data used in each field

Fields require both binary and ASCII indexes because of differences related to data encoding.
When a file is binary-encoded, each field is assigned a fixed number of bytes. So the index
into a particular field of a binary-encoded file is a range of byte numbers. When a file is
ASCII-encoded, the number of bytes in a field is variable. However, all fields are separated
by line feed characters (ASCII decimal 10). So the index into a particular field of an
ASClII-encoded file is a line number.

The file data types are as follows:

* Char[n] — This data type consists of a series of ASCII-encoded bytes. When the
whole file is ASCII-encoded, [n] specifies the maximum number of bytes in the
field. When the whole file is binary-encoded, [n] specifies the actual number of
bytes in the field.

* Bool — This data type has acceptable values of 0 and 1. When the file is
ASCII-encoded, the value is simply transferred as an ASCII-encoded 0 or 1. When
the file is binary-encoded, the 0 or 1 is transferred as a one-byte, binary-
encoded integer.

* Short — This data type is used for integers (maximum range of —32768 to
+32767). When the file is ASCII-encoded, values are transferred using the NR1
format. When the file is binary-encoded, values are transferred as two-byte,
binary-encoded integers.

* Long — This data type is used for integers (maximum range of --2,147,483,648 to
+2,147,483,647). When the file is ASCII-encoded, values are transferred using the
NRI1 format. When the file is binary-encoded, values are transferred as four-byte,
binary-encoded integers.

* Float — This data type is used for single-precision fixed point and floating point
numbers. When the file is ASClI-encoded, values are transferred using either the
NR1, NR2, or NR3 format. When the file is binary-encoded, values are transferred
using the 32-bit binary floating point format.

* Double — This data type is used for double-precision fixed point and floating point
numbers. When the file is ASCII-encoded, values are transferred using either the
NR1, NR2, or NR3 format. When the file is binary-encoded, values are transferred
using the 64-bit binary floating point format.

* E-short — This data type is simply a short whose value is encoded. The meaning
assigned to each value is included as part of the field’s description.

416

Table 4-3 . Channel Header Record

Transferring Data

ASCH | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line 1 byte 1.4 RECORD TYPE long 104794368 (06020000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCIl or Binary long 12 lines or 128 bytes
3 912 TOTAL RECORDS REFERENCED long 0
4 13:20 time-record overlap per average {requested) double 0:0.99
5 21:22 overioads occurred during measurement (G=no, 1=yes) short 01
6 23.24 input coupling (1=DC, 2=AC) e-short 1.2
7 25:32 input range double —51:27 dBVrms
8 33:34 windowing function 1 = Uniform e-shart 1:6
2 = Hanning
3 = Flat Top
4 (not supported)
5 = force
6 = expanential
8 35:50 name of channe! providing this vecter's data charf16]
10 51:58 force/exponential window decay double 01E+100s
11 59:66 force window width double O:iE+100s
12 67.68 input grounding (0=grounded, 1="foating} e-short 0:1
- 69:128 padding {binary file only)

#This field is ignored on recall.

4-17

Transferring Data

Table 4-4. Channel State Record

ASCll | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line 1 byte 1:4 RECORD TYPE long 218103808 (0d0000A0 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCH or Binary long 18 lines or 128 bytes
3 812 TOTAL RECORD REFERENCE COUNT long 0
4 13:14 # of the channel this record describes short 1:2
5 15:16 windowing function @ = Uniform e-short 0:4
1 = Hanning
2 = Flat Top
3 (not supported)
4 = force/expanential
6 17 force/exponential type (O=force, 1=exponential) bool 0:1
7 18:25 force/exponential window decay double 0:1E+100s
8 26:33 force window width double 0:1E+100 s
8 34:41 input range double --51:27 dBVrms
10 42 auto-range state (O=off, 1=on} bool 0:1
k| 43 input greunding (O=grounded, 1=floating) bool 0:1
12 44 input coupling (0=DC, 1=AC) bool 01
13 45 engineering units state (O=vclts active, 1=EUs active) baol 01
14 46:53 voits to eng. units conversion factor double ~1E+108:1E+ 100, except 0
15 5469 eng. units label for input range char[16] | upper- and lower-case alpha,
: numbers, spaces, and
et =" NOU{Y
16 7077 dBVrms fo normal units conversion factor double {dependent cn normal units)
17 78:93 active normal units label for input range char[16] | dBVrms, dBVpk,
- Vrms, V. dBm
18 | 94101 trigger delay double (range dependent on span} s
— | 102:128 padding {binary file only)
Table 4-5 . Complete Result Record
ASCH | Binary | Meaning of Data/ Data | Range/
Index Index Data Type | Unils
line 1 byte 1:4 RECORD TYPE fong | 262144 (00040000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCH or Binary leng 7 lines or 128 bytes
3 212 TOTAL RECORDS REFERENCED : long 4:5
4 13:16 RECORD REFERENCE. # of vector records to follow long 1
5 17:20 RECORD REFERENCE: # of measurement header records to follow | long 1
6 21:24 RECORD REFERENCE: # of channel header records to follow long 1:2
7 25:28 ; RECORD REFERENCE: # of display header recards to follow fong 1
- 29:128 | padding (binary file only) l
\

4-18

Transferring Data

Table 4-6. Data Table Record

ASCII Binary ' Meaning of Data/ Data Range/
Index Index | Data Type Units
line1 | byte1:4 RECORD TYPE long 369098752 (16000000 when
converted t¢ hexadecimal)
2 58 RECCRD LENGTH: ASCil or Binary long 9:2058 lines or
128:16512 bytes
3 912 TOTAL RECORD REFERENCE COUNT long 0
4 13:14 # of the data table this record describes short 03
5 15 data table calculation (0=off, 1=on) bool 0:1
] 16:17 # of points in the table short 1:401
7 18:21 . skip from recard start to data start . long 7 lines or 21 bytes

Data table data starts here. It consists of a number of points that are directly adjacent to each other in the record. Each point is
defined by 2 values. Points are repeated n times to a maximum of 401 poants A point takes this form:

26: 295 y-axis value . fleat | {dependent on vertical units)

‘ 22:25 1 X-axis value float | —120E+3:120E+3 iz or 5
‘ points 2 through n |

padding to multiple of 128 (binary file only)

Table 4-7. Data Table Reference Record

ASCII | Binary : Meaning of Data/ Dala . Range/
index Index Data Type Units
line1 | byte1:4 RECORD TYPE long ! 524288 (00080000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCH or Binary long 4 lines or 128 bytes
3 9:12 TOTAL RECORD REFERENCE COUNT long 02
4 1316 RECORD REFERENCE: # of data table records to follow , long 0.2
— ¢ 17128 [padding (binary file only)
| |

4-19

Transferring Data

4-20

Table 4-8 . Display Header Record

ASCH | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line 1 byte 1:4 RECORD TYPE long 167837696 (DAD10000 when
converted to hexadecimal)
2 58 RECGRD LENGTH; ASCIl or Binary long 21 lines 0r256 bytes
3 9:12 TOTAL RECORDS REFERENCED long 0
4 1314 type of coordinates 0 = linear magnitude e-short 0.8
1 = logarithmic magnitude
2 = magnitutle
3 = phase
4 = real
5 = imaginary
6 = group delay
7 = user math
8 = null
5 15 data labeiling (0=off, 1=0n) boot 01
] 16 x-axis scaling (0=Ilinear, 1=Ilogarithmic) bool 0:1
7 17:32 y-axis engineering units label chai(16] | upper- and lower-case alpha,
numbers, spaces, and
R ALY
8 33:40 internal to eng. units conversion factor (for y-axis label) double —1E100:1E+ 100, except 0
g 41 data valid (O=no, 1=yes) bool 01
10 42:43 reserved short 0
11 44 reference level tracking (O=off,1=0n) boot 0:1
12 45:60 internal units label (for y-axis per division) char[18]1 | VM V™2 Vrms, Vims ™ 2, dB,
deg, rad, V/rtHz,
Vrms/riHz, V-~ 2/Hz,
Vims ™~ 2/Hz, s
13 61:76 engineering units label (for y-axis per div.) char[168] | upper- and lower-case alpha,
numbers, spaces, and
, , Lt =T L AO)
14 77:84 inernal to eng. units conversion factor (for y-axis per div) double ~1E+100:1E+ 100, except 0
15 85:62 per div. value for y-axis (in internal units) double (dependent on per div. units)
18 93:108 internal units labet (for y-axis reference) char[18] | V. V™2, Vrms, Vrms~ 2, d8,
dBm, dBVpk, dBVrms,
deg, rad, V/rtHz,
Vrms/riHz, V~ 2/Hz,
Vrms ™ 2/Hz, dBVpk/Hz,
dBVrms/Hz, d8m/Hz, s
171 109124 engineering units label {for y-axis ret.) char[18} | upper- and lower-case alpha,
numbers, spaces, and
_ A 11283
18 1125132 internal to eng. units coaversion factor {for y-axis ref.) double —1E+100:1E+100, except 0
19 1133140 value for top of y-axis double {dependent on y-axis ref. units)
20 | 141148 value for center of y-axis double {dependent on y-axis ref. units)
21 149:156 value for bottom of y-axis double {dependent on y-axis ref. units}
— 157:256 padding (binary file only)

Table 4-9. Display State Record

Transferring Data

ASCIl | Binary Maaning of Data/ Data Range/
Index index Data Type Units
line1 | byte 1.4 RECORD TYPE long 234881024 {DEO0OO00 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCH or Binary long G lines or 128 bytes
3 812 TOTAL RECORD REFERENCE COUNT i long 3
4 13:14 display format 0 = upper/lower e-short 0:3
1 = single
2 = front/back
3 = state display
5 15 frequency label blanking (0=off, 1 =on) bool 0:1
) 16 display blanking (0=off, 1=on) bool 0
7 17:18 # of the active trace short 1:2
8 19:22 RECORD REFERENCE: # of math records fo foliow long 1
8 2328 RECORD REFERENCE: # of trace state records to follow lang 2
- 27128 padding (binary fite only)
Tabte 4-10. Exptession Record
ASCH | Binary Meaning of Data/ Data Range/
index Index Data Type Units
ine 1 | byte 1:4 RECORD TYPE leng 268435456 (10000000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH; ASCH or Binary ¢ long 5 lines or 384 bytes
3 9:12 TOTAL RECORD REFERENCE COUNT long ¢
4 1314 # of the function (F1-F5) this record describes short 1:5
5 15284 expression that defines the function chas[270]; SPEC1, SPEC2, PSD1, P3D2,
TIMET1, TIME2, FRES, COH,
CSP F1.F5, K1:K5,
'<tilename>', JOM,
CONJ, MAG, REAL,
IMAG, SQRT, FFT,
IFFT, and)+ —~*/
— | 285384 padding {binary file only)

4-21

Transferring Data

Table 4-11. File Header

ASCII | Binary | Meaning of Data/ ! Dala Range/
Index Index Data Type Units
line 1 byte 1:2 system 1D short 0
2 34 file encoding 1281 =binary e-short 1281, 1282
1282=ASCIt
3 5:6 version number (major part) short 0
4 7:8 version number (minor part) short 1
5 912 file type 262144 =trace file lang 262144, 327680, 393216,
327680=instrument state file 458752, 524288
393216=math file
458752 =limit table file
524288 =data table file
6 1316 RECORD LENGTH: ASCH or binary long ! 6 knes or 128 bytes
- 17:128 padding (binary fiie only)
Table 4-12, Limit Table Record
ASCIl | Binary Meaning of Data/ Data Range/
Index index | Data Type Units
liret = byte1:4 RECORD TYPE long 352321536 (15000000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCllor Binary long 13:10248 lines ar
128:82048 bytes
3 a.12 TOTAL RECORD REFERENCE COUNT long 0
4 1314 # of the limit table this record describes short 1:8
5 15 offset y-axis entry state (0=off, 1=0n) bool 0.1
6 16:19 offset y-axis entry value float {dependent on vertical units}
7 20:21 # of segments in the table short 1:802
B 2225 skip from record start to data start long 8lines or 25 hytes

Limit table data starts here. The data consists of a number of segments that are directly adjacent to each other in the record. Each
segment is defined by five values. Segments are repeated n times 10 a maximum of 802 segments. A segment takes this form:

8
10
11
12

131

26
27:30
31:34
35:38
39:42

upper of fower limit (0=lower, 1=upper)
X-ads start value

x-axis stop value

y-axis slart value

y-axis stop value

segments 2 through n

padding to multiple of 128 {binary file only)

bool
fioat
ficat
float
float

a1

—120E+3:120E+3 Hzars
—120E+3:120E+3 Hz or s
(dependent on vertical units)
{dependent on vertical units)

4-22

Table 4-13. Limit Table Reference Record

Transferring Data

ASClI Binary Meaning of Data/ Data Range/
Index index Data Type Units
fine1 | byte1:4 RECORD TYPE lang 458752 (DOO70000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCII of Binary long 4 lines or 128 bytes
3 g12 TOTAL RECORD REFERENCE COUNT long 0:8
4 1316 RECORD REFERENCE: # of limit table records to follow long 0:8
- 17:128 padding (binary file only}
Table 4-14. Marker State Record
ASCHl | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line1 | byte1:4 RECORD TYPE long 318767104 (13000000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCIl or Binary long 6 lines or 128 bytes
3 g12 TOTAL RECORD REFERENCE COUNT iong 4
4 1316 RECORD REFERENCE: # of trace-dependent marker long 2
records to follow
5 17:20 RECORD REFERENCE: # of limit table reference long 1
records to foliow ‘
8 21:24 RECORD REFERENCE: # of data table reference ;. long 1
records o follow ‘
- 25128 padding (binary file only) |
| |
Table 4-15. Master State Record
ASCIl | Binary Meaning of Data/ Data | Range/
Index Index Data Type | Units
line 1 byte 1:4 RECORD TYPE long 327680 (00050000 when
: ' converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCIl or Binary long 9 tines or 128 bytes
3 ¢12 TOTAL RECCGRD REFERENGE COUNT long 4
4 13:16 time stamp (six-digit integer; hkmmss) long 0600@0:235959
5 17:20 date stamp (six-dligit inleger: mmddyy) long 010100:123199
6 21:.24 RECORD REFERENCE: # of measurement state records to follow long 1
7 25:28 RECORD REFERENCE: # of display state records 1o follow long 1
8 29:32 RECORD REFERENCE: # of system state records lo follow long 1
9 33:36 RECORD REFERENCE: +# of marker state records to follow long 1
- 3rizs padding (binary file only)

4-23

Transferring Data

Table 4-16. Math Record

ASCHl | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line1 | byte1:4 RECORD TYPE long 393216 (DDGBO000 when
converted to hexadecimal}
2 58 RECORD LENGTH: ASCIlor Binary long 14 lines or128 bytes
3 a12 TOTAL RECORD REFERENCE COUNT long 05
4 1318 RECORD REFERENCE: # of expression records to follow long a:5
5 17:24 real part of constant K1 double —340.28E + 36:340.28E+ 36
] 25:32 imaginary part of constant K1 double —340.28E 4+ 36:340.28E+ 36
7 33:40 real part of constant K2 double —340.28E +36:340.28E + 26
8 41:48 imaginary part of constant K2 double —340.28E +36:340.28E+ 36
9 4356 real part of constant K3 double -340.28E +36:340.28£ + 38
10 5764 imaginary part of constant K3 double —340.28E +36:340.28E + 36
11 6572 real part of constant K4 double —340.28E +36:340.28E+ 36
12 73:80 imaginary part of constant K4 [double —340.28E+36:340.286+ 36
13 81.88 real part of constant K5 double —340.28E+ 36:340.28E+ 36
14 89:96 imaginary part of constant KS double —~340.28E+36:340.28E+ 36
- 97:128 padding (binary file only)

4-24

Transferring Data

Table 4-17 . Measurement Header Record

ASCIl | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
line 1 byte 1:4 RECORD TYPE fong 84017152 (05020000 when
converted to hexadecimal)
2 58 RECORD LENGTH. ASCH or Binary long 27 lines or 128 bytes
3 312 TOTAL RECORDS REFERENCED long 0
4 13:14 type of data 0 (not supported) e-short 0:18
1 = time
2 = spectrum
3 (not supported)
4 = frequency response
5 = cross spectrum
6:9 (not supported)
10 = coherence
11:15 (not supported)
16 = power spectral density
17 = user math
18 = null
#5 15:18 x-axis domain 1 = frequency e-short 1:3
2 = time
3 (not supported)
6 17:18 zoom mode {0=baseband, 1 =zoom) short 0:1
7 19:28 center frequency double 0:115E+3 Hz
B 27:34 frequency span double 195.3E-3;102.4E+ 3 Hz
8 36:42 starting frequency double —-65.5E+3:115E+3 Hz or
time —328E+3:819E+3 s
10 43:50 ending frequency double —B5.5E+3:115E+ 3 Hz or
time —328E+3:8.19E+3s
+11 51:54 time record block size long 512, 1024
12 55:68 # of first point with valid data leng 0:1024
13 59.62 # of last point with valid data leng 01024
+14 63:64 measurement mode 1 = linear resolution e-short 1.2
2 (not supported)
15 65:68 time stamp (sb-digit integer: hhmmss) long 000000:235858
16 69:72 date stamp (six-digit integer: mmddyy) tong 010100:123189
17 7374 averaging type 0 = RMS e-short 0:3
1 = vector
2 = peak hoid
3 = off
18 7578 # of averages long 1:85999
19 79:80 averaging state (0=off, 1=on) short 0:1
20 81.82 exponential averaging state (0=off, 1=on) short 0:1
21 8384 # of channels used for the measurement short 1.2
22 85:86 channel providing this vector's data O=not channel specific| short 0:2
1 = channel 1
2 = channel 2
23 87 frequency pair used (O=center/span, 1=start/stop) bool 0:1
24 88 math overflow duting measurement (O=no, 1=yes) bool 0:1
25 89 measurement occurred in real-time (0=no, 1=yes) bhool 0:1
26 a0 data before FFT 0 = complex booi 0:1
1 = real
27 $1.98 reference impedance for dBm units double 1E-31E+7Q
- 99:128 padding (binary file only)
1

1This field is ignored on recall.

4-25

Transferring Data

Table 4.18. Measurement State Record

ASCIi | Binary Meaning of Data/ i Data Range/
index Index Data | Type Units
line1 | byte1:4 RECORD TYPE | long 201326592 (0CO0A000 when
cenverted to hexadecimal)
2 5.8 RECORD LENGTH: ASCH or Binary long 33jines or 256 bytes
3 912 TOTAL RECORD REFERENCE COUNT iong 2
4 1314 # of channels in measurement short 1:2
5 1522 center frequency double 0:115E+3 Hz
B 23:30 frequency span double 195.36—3:1024E+3 Hz
7 31:38 start frequency double {range dependent on span) Hz
& ! 3946 stop frequency double (range dependent on span) Hz
§ | 4754 increment for stepping frequencies double 15.625E-3:51.2E+3 Hz
10 55:62 time length of record double 3.806E—3:2.048E+3 s
11 63 zoom mode (0=baseband, 1=zoom) bool 0:1
12 64:65 active frequency pair {0=start/stop, 1=center/span) e-short 01
13 66:67 trigger type: 0 = continuous g-short 0:6
1 = external
2 (not supported)
3 = source
4 = internal, channel 1
5 = internal, channel 2
6 =HP-B
14 68.75 trigger level (as a percentage of input range) double —100:100 %
15 76 trigger slope (0= negative, 1=positive) boot 01
16 77 source output state (0=off, 1=on} bool 0:1
17 78:79 source output type: & (not supported) g-ghort 0:3
1 = fixed sine
2 = periodic chirp
3 = random noise
18 80:.87 source level for random noise output double 05V
19 88:85 source level for periodic chirp output double o5V
20 | 96:103 source level for sine wave output double 05V
21 | 104:119 source leve! label char[16] | V. Vrms, dBVpk, dBVims
22 | 120127 internal to eng. units conversion factor (for source level) double —1E+100;1E+ 100, except 0
23 | 128135 frequency of source sine wave double 0:115E+3 Hz
24 | 136:137 arming mode (0= automatic arming, 1=manrual arming) e-short 0:1
25 138 averaging state (D=off, 1=on) beol 01
26 | 139:140 averaging type 0 = RMS e-short 0:3
t = vector
2 = peak hold
3 = off
27 | 141144 number of averages long 1:98999
28 | 145146 exponential averaging state {0=off, 1=o0n) e-short 01
28 147 fast averaging state (0 =off, 1==0n) ool 0:1
30 | 148:151 fast averaging update rate long 1:99599
31 | 152:189 time-record overlap per average (requested) double 0:0.89
32 | 160:167 reference impedance for dBm calculations double 1E-310E+6 Q
33 168171 RECORD REFERENCE: # of channel state records to follow | long 2
- 172:256 padding (binary file aniy}

4-26

Transferring Data

Table 4-19. System State Record

ASCHl | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
fine1 bytet:4 RECORD TYPE long 285212672 (11008000 when
canverted to hexadecimal)
2 58 RECORD LENGTH: ASCIl or Binary long 21 lines or 128 bytes
3 912 TOTAL RECORD REFERENCE COUNT long ¢
f4 1314 storage device 0 = no storage e-short .3
1 = external disc {HP-IB)
2 = internal disc
3 = RAM disc
5 15 storage coding (G=ascli, 1=binary} booi o1
6 16 auto-calibration state (0=off, 1=0n) bool 0:1
7 17 calibration trace display {0=off, 1=0n) bool 0:1
8 18 beeper state (0=off, 1=0n) bool 0:t
9 15:20 active plotter speed 0 = fast (36 cm/sec) g-short 02
1 = slow (5 cm/sec)
2 = user-defined
101 2122 user plotter speed | short | 1:100 cm/sec
11 2324 grid pen number short 0:84
12 25:26 alpha pen number : short 0:64
13 27 system controller state 0 = addressable cnly
% 1 = gystem controller hool 0:1
14 2829 HP 35660A's bus address short 0:30
15 306:31 external disc's bus address short 0:7
16 32:33 external disc’s unit number short 0:15
17 34:35 external disc's volume number short 0:7
18 36:37 printer's bus address short 0:30
19 38:39 plotter’s bus address short 0:30
20 40 HP-IB status annunciators (0=off, 1=on} bool 0:1
21 41:42 mnemonic display state 1 = mnemonic echo e-short 1:3
2 = mnemonic scrolf
3 = mnemonic dispiay off
- 43:128 padding {binary file only)
H

T This field is ignored on recall .

4-27

Transferring Data

Table 4-20. Trace State Record (part 1)

ASCIl | Binary Meaning of Data/ Data Range/
Index index Data Type Units
line1 | byte1:4 RECORD TYPE long 251658240 (0FO00000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH:; ASCIl or Binary long 30 lines or 256 bytes
3 g:12 TOGTAL RECORD REFERENCE COUNT long 0
4 13:14 # of the trace this record describes short -1,-21.2
5 15 trace active (O=not active, 1=active) bool 0:1
6 16:45 user-defined trace title char[30] | upper- and lower-case alpha,
numbers, spaces, and
met - NGOG
7 46:47 type of coordinates O = linear magnitude e-short 06
1 = logarithmic magnitude
2 = magnitude
3 = phase
4 = real
5 = imaginary
6 = group delay
8 48:4% type of data O (not supported) e-short 0.6
1 = time
2 = spectrum
3 = power spectral density
4 = frequency response
5 = coherence
6 = cross spectrum
g 50:51 channel providing this trace's data 0 = not channel specific | e-short 0:2
1 = channel 1
2 = channel 2
10 52:53 # of active math function (0=no function active) short 05
11 54:55 # of active math constant (0=no function active) short 0:5
12 56:63 group delay aperture double 051, 2
4,8 16 %
13 64 grid display (0=0ff, 1=0n) bool 01
14 65.66 reserved short 0
15 67 reference level tracking (0=off, 1=on) bool 0:1
18 68:83 internal units label {for y-axis per division value) char[18] | V V~2 Vims, Vims~ 2, dB,
deg, rad, VirtHz,
Vrms/rtHz, v~ 2/Hz,
Vims~2/Hz, s
17 84:99 engineering units label (for y-axis per div.) char[16] | upper- and lower-case alpha,
nusmbers, spaces, and
, , , _ , et =/ ([}
18| 100:107 internal to eng. units conversion factor (for y-axis per div) double —1E+100: 1€+ 100, except 0

T This field is ignored on recall.

428

Transferring Data

Table 4-20. Trace State Record (part 2)

ASClt | Binary Meaning of Data/ Data Range/
Index Index Data Type Units
ine 19 | 108:115 per div. vaiug for y-axis {in internal units) double (dependent on per div. units)
20| 118131 internal units fabel {for y-axis reference values} char{16} | V, vV~ 2, Vrms, Vrms ™2, dB,

dBm, dBVpk, dBVrms,
deg, rad, V/rtHz,
Vrms/tHz, V ~ 2/Hz,
Vims ~ 2/Hz, dBVpk/Hz,
dBVrms/Hz, dBm/Hz, s

214 132147 engineering units fabel (for y-axis ref. values) char[16] | upper- and lower-case alpha,
numbers, spaces, and

et = NOB{D

221 148:155 internal to eng. units conversion factor (for y-axis ref. values) | double = 1E+100:1E+ 100, except 0
231 156:163 reference value for top of y-axis double {dependent on y-axis ref. unis)
241 184171 reference value for center of y-axis double {dependent on y-axis ref. units)
25 | 172179 reference vaiue for bottom of y-axis double {dependent on y-axis ref. units)
26 | 180181 reference last changed 0 = top e-short 0:2
1 = center
2 = bottom
27 182 x-axis scaling (0=linear, 1=logarithmic) bool 01
28 | 183184 pen number used to plot this trace short 0:64
291 185:186 line type used to plot this trace 0 = sofid g-short 04
1 = dotted
2 = dashed

3 = user-defined

30 | 187:188 user-defined line type short 0:6, —4096
{The number’'s meaning is plotter dependent.)
— i 189:256 padding (binary file onfy}

4-28

Transferring Data

4-30

Table 4-21. Trace-dependent Marker Record

ASCIH Binary Meaning of Data/ Data Range/
Index Index Data Typa Units
line 1 byte 1:4 RECORD TYPE long 335544320 (14000000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCH or Binary ! long 29 lines or 128 bytes
3 912 TOTAL RECORD REFERENCE COUNT long 0
4 1314 # of the trace this record describes short 1.2
5 15 main marker state (0=off, 1=on) bool 0:1
] 16 marker coupling (O=off, 1=o0n) bool 0:1
7 17:24 main marker's x-axis value doubte (within selected span) Hz or
(within selected time record) s
8 25 offset marker state {O=off, 1=o0n} hool Q.1
9 26:33 offset marker's x-axis value double 0:115E+3 Hz ors
10 3441 offset marker's y-axis value double {dependent on vertical units)
11 42 peak tracking (0= cff, 1=on) bool 0:1
12 43:50 marker search target level double (dependent on vertical units)
13 51:52 active special marker 0 = special markers off e-short a3
1 = harmonic marker
2 = band marker
3 = sideband marker
14 53:680 fundamental frequency of harmonic marker double 0:115E+3 Hz
15 §1 harmonic calculation selected (O=harmonic power, 1=THD}! bool 01
16 62:63 number of harmonics selected i short 0:400
17 64 harmonic results dispiay (O=off, 1=an} ¢ boal 0:1
18 65:72 carrier frequency for sideband marker i double 0:115E+3 Hz
19 73:80 incremental frequency between sidebands i double O:115E+3 Hz
20 81 sideband power calculation (0=off, 1=on) bool a1
21 82:83 number of sidebands short 0:200
22 84:91 lowest frequency of band marker double 0:115E+3 Hz
23 92:99 highest frequency of band marker double 0:113E+3 Hz
24 160 band power calculation (0=off, 1=o0n) bool 0:1
25 1101:102 # of active limit table short 1:8
26 103 limt lines (0=off, 1=o0n) booi 01
27 104 limi test (0=off, =on) booi 0:1
28 105 limit beeper (0=off, 1=o0n) boot 01
2% 108 calculate data table (0=off, 1=on) bool 01
-~ | 107128 padding (binary file only)

Transferring Data

Table 4-22 . Vector Record

ASCH Binary Meaning of Data/ Data Range/
index Index Data Type Units
line 1 byte 1.4 RECORD TYPE leng 117571584 (07020000 when
converled to hexadecimal)
2 58 RECORD LENGTH: ASCI or Binary long 20:1041 lines or
384.8448 bytes
3 9:12 TOTAL RECORDS REFERENCED . long 0
4 13:14 # of points in the record . short §12if frequency data,
: 3:1024 if time data
5 15:94 | ftrace label . char[80] | upper- and lower-case alpha,
! numbers, spaces, and
=00}
6 95:96 # of x-as values per point short it
7 97:136 x-axis domain label ¢ char{40] | FREQUENCY, TIME
8 137:152 x-axis unit label ! char[16] | Hz s
9 153:160 X-axis start point double —B65.5E+3:115E+3 Hz or
~32.8E+3:819E+3 s
10 161:168 X-axis increment between points double 2.44E—3:256 Hz or
381E-6:40s
1} 169:170 # of y-axis values per point 1 when data is real short 12
2 when data is complex
12 171:210 y-axis domain label char[40] . REAL, COMPLEX
13 211:226 y-axis unit label char{16] | V, V™2, Vring, Vrms~ 2, dB,
Mot listed are the many special units that dBm, dBVpk, dBVims,
can result from math operations or the deg, rad, V/rtHz,
application of engineering units. However, f Vrms/rtHz, V ~ 2/Hz,
such units are valid here. Vrms ~ 2/Hz, dBVpk/Hz,
dBVrms/Hz, dBm/Hz, s
14 227.234 y-axis start point double 0
#15 235:242 y-axis increment between points double 0
16 243:244 vector data format (for binary transfers) g-short 1:2
1=32-bit binary floating point (IEEE 754-1985)
2=064-bit binary floating point (IEEE 754-1985)
17 245:248 skip from record start to data start long ¢ 17 lines or 248 bytes

Vector data starts here. The data consists of a number of points that are directly adjacent to each other in the record. Line 4 specifies
the number of points (n) in the record. Line 16 specifies whether points are made up of floats or doubles. Points can take one of two
forms. If you are transferring real data, a point takes this form:
|
18 | 249:252 y-axis value tloat | —340E +36:340E+ 36
or 249:256 double |
- | - points 2 through n
- - padding to multiple of 128 (binary file only)

H

I{ you are transferring complex data, a point takes this form:

18 249252 y-axis value (real part) float i —340E+36:340E+36
or 249:256 double !

19 253:256 y-axis value (imaginary part) fioat : —340E +36:340E + 36
or 257.264 double |

- - points 2 through n

- — | padding to multiple of 128 {binary file only)

tThis field is ignored on recall,

4-31

Using the HP 35660A's Status Registers

Chapter 5
Using the HP 35660A’s
Status Registers

Introduction

The HP 35660A’s status registers contain information about various analyzer conditions.
The controller can use one of two methods to access this information:

* The direct-read method — reading the analyzer’s registers directly
* The SRQ method — using the analyzer’s service request (SRQ) process

In the direct-read method, the analyzer has a passive role. It only tells the controller that
conditions have changed when the controller asks the right question. In the SRQ method,
the analyzer takes a more active role. It tells the controller when there has been a
condition change without the controller asking. Either method allows you to monitor one or
more conditions.

When you monitor a condition with the direct-read method, you must:
1. Determine which register contains the bit that monitors the condition.
2. Send the unique HP-IB query that reads that register.
3. Examine the bit to see if the condition has changed.

The direct-read method works well if you do not need to know about changes the moment
they occur. It does not work well when you must know about condition changes immediately.
Your program would need to continuously read the registers at very short intervals. Since
this would make the program relatively inefficient, it would be better to use the SRQ method.

When you monitor a condition with the SRQ method, you must:
1. Determine which bit monitors the condition.
2. Determine how that bit reports to the request service (RQS) bit of the Status Byte.

3. Send HP-IB commands to enable the bit that monitors the condition and to enable
the summary bits that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB’s SRQ line. Your
program determines how the controller responds to the SRQ, but the important point is this:
the controller is informed of the change as soon as it occurs. The time the controller would
otherwise have used to monitor the condition can now be used to perform other tasks.

5-1

Using the HP 35660A’s Status Registers

Register Reporting Structure

To use the SRQ method, you must understand how changes in analyzer conditions can result
in the HP-IB’s SRQ line being set. This requires an understanding of the following items:

* The analyzer’s register reporting structure
* The types of registers used in a register set

* The commands and conditions that affect each of the analyzer’s register sets

This section discusses the register reporting structure. Subsequent sections discuss the
other items.

Dot integrity
Recister Set

s Device Sicius
{Regisfer Set | 4 !

L Svent Slatus 1 | Jser Status

ffj \| Reqgister et ! Register Set
| i H - ‘ :
Seryice | : . |
Fanuast o MRGET
(3RIY P ,
3 ; | 2 - T
s i h 1 1
a | A | O O Sictus Byte
i : ; | | Hegistar
b)
s Lvss
‘ Service ! i ‘
Recuest \ i ‘
SProcess / |
i ; o
i |
Lw._ﬁw__‘.l__.; | Y - ¥ [‘ ¥
= | % [" 5 Service Reguest

Znaale Regizter

Figure 81 Register Reporting Structure

As shown in Figure 5-1, four register sets report to the Status Byte register. The Device
Status, Event Status, and User Status register sets all report directly to a particular bit in
the Status Byte. The Data Integrity register set reports indirectly to the Status Byte via bit
4 of the Device Status register set.

5-2

Using the HP 35660A’s Status Registers

When a register set causes a Status Byte bit to change from 0 to 1, the analyzer may initiate
its service request (SRQ) process. However, the process is only initiated if both of the
following conditions are true:

* The corresponding bit of the Service Request enable register is also set to 1

* The analyzer does not have a service request pending (A service request is
considered to be pending between the time the analyzer’s SRQ process is initiated
and the time the controller reads the Status Byte register with a serial poll)

The analyzer’s SRQ process sets the HP-IB’s SRQ line true and also sets the Status Byte’s
RQS bit to 1. Both actions are necessary to inform the controller the HP 35660A requires
service. Setting the SRQ line only informs the controller that some device on the bus
requires service. Setting the RQS bit allows the controller to determine that the HP 35660A,
in particular, requires service.

If your program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll when the HP-IB’s SRQ line is set true. Each
device on the bus returns the contents of its Status Byte register in response to this poll.
The device whose RQS bit is set to 1 is the device that requested service.

NOTE When you read the analyzer’s Status Byte with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

As implied in Figure 5-1, bit 6 of the Status Byte register serves two functions. Twao
different methods for reading the register allow you to access the two functions. Reading
the register with a serial poll allows you to access the bit’s RQS function. See the description
of bit 6 later in this chapter for information on accessing the bit’s MSS function.

5-3

Using the HP 35660A's Status Registers

Types of Registers in a Set

The HP 35660A uses four different types of registers in its register sets. The register
types are:

1. Condition register

2. Transition registers (one positive, one negative)
3. Event register

4. Enable register

Information Flow in a Register Set

As shown in Figure 5-2, the information flow within a register set starts at the condition
register and ends at the register summary bit. You can control the flow of information
toward the register summary bit by specifying which bits are set in the transition and
enable registers.

Condition Transition Event Erabie
Register Reglatars = Register Register
¥ o1 -m:w)w- e S SR
¥ ol e TR
o R DTN S] .
I "2 — 7
I I— [— ot |
| Ao b 4
—H ke] » H
— O e 3 o 4 E 0 Is
o o4 n - B P S
ey = S| f— —
L I = - Bamtn I I mate | o
o - B i { i beew
..... [S k! wed 3 e &
—— 1 [
2L U R Ty
]
N L . : -
i 5 i]
L] A Lo

Figure 5-2 Information Flow in a Register Set

5-4

Using the HP 35660A’s Status Registers

The condition register and its two transition registers work together to report condition
changes to the event register. Each condition register bit directly monitors a particular
analyzer condition. The bit is set to 1 when the condition it monitors becomes true. The bit
is reset to 0 when the condition it monitors becomes false. When a condition bit changes
from O to 1, the change is only reported to the event register if the corresponding bit in the
positive transition register is set to 1. When a condition bit changes from 1 to 0, the change
is only reported to the event register if the corresponding bit in the negative transition
register is set to 1.

The event register and its enable register work together to report latched condition changes
to the register summary bit. If an event register bit is reset to 0, the first condition change
reported to that bit causes it to be set to 1. Once set, an event bit is no longer affected by
condition changes. It remains set until you clear the register. The setting of an event bit is
only reported to the register summary bit if the corresponding enable register bit is set to 1.

The register summary bit is only set to 1 when one or more enabled event bits is set to one.
It is reset to O at all other times.

Special Cases

Two of the analyzer’s register sets (Event Status and User Status) only contain an event
register and an enable register. In these register sets, event and enable bits serve the same
function as in sets that contain all four register types. However, the rule for setting an event
bit is slightly modified. Each event bit is assigned to a particular analyzer condition. If the
event bit is reset to 0, the first positive transition of the condition (from false to true) causes
the event bit to be set to 1. Essentially, the event bit behaves as if a condition bit is reporting
to it through a positive transition bit.

One of the analyzer’s register sets (the Status Byte register set) contains only a condition
register and an enable register. The set consists of the Status Byte register and the Service
Request enable register. The Status Byte register is, with the exception of bit 6, a condition
register. This means that when the condition monitored by a particular bit is true, that bit is
set to 1. When the condition is false, the bit is reset to 0.

Bit 6 of the Status Byte register (when read by the *STB command) serves as the summary
bit for the other bits in the register. The Service Request enable register determines which
of these other bits will be included in the summary. A Status Byte bit is only included in the
summary if the corresponding bit in the Service Request enable register is set to 1.

5-5

Using the HP 35660A’s Status Registers

The HP 35660A’s Register Sets

The HP 35660A uses five register sets to keep track of instrument status. The register

sots are:

1.

The Data Integrity register set — monitors conditions that can effect the validity
of your measurement data

The Device Status register set — summarizes events in the Data Integrity register
set and monitors additional analyzer conditions

The User Status register set — detects STAT:USER:PULS commands and
key-presses of the instrument’s user SRQ softkeys

The Event Status register set — deteets errors and monitors
synchronization conditions

The Status Byte register set — summarizes conditions in the other register
sets and monitors the analyzer’s output queue

The registers sets are summarized graphically in Figure 5-3. They are described in the
following sections.

5-6

Using the HP 35660A's Status Registers

JEVICE STATUS

—F

DATA INTERGRITY

S5TATUS BYTE

USERS STATUS

T EEEE

{ENENNEEENRENREAN

Figure 5.3 HP 35660A Register Summary

Using the HP 35660A’s Status Registers

Status Byte Register Set
The Status Byte register set contains:

* The Status Byte register (behaves like a condition register for all bits except bit 6)

* The Service Request enable register (for enabling and disabling all bits of the
Status Byte register except bit 6)

Power-up States

The state of the Status Byte register at power-up is variable.

The state of the Service Request enable register is saved in nonvolatile memory when you
send the SYST:SAVE command. It can be recalled at power-up, depending on the setting of
*PSC. If *PSC is 0, the register’s state is recalled. If *PSC is 1, all of the register’s bits are
reset to 0.

Writing to the Registers

You can not write directly to the Status Byte register. Write to the Service Request enable
register using the *SRE command.

Reading the Registers

Read the Status Byte register either with the *STB query or with a serial poll. If you read
the register with the *STB query, bit 6 serves as the Master Summary Status {MSS) bit.
If you read the register with a serial poll, bit 6 serves as the request service (RQS) bit.

The other bits’ meanings are not affected by the method you use to read the register.

Read the Service Request enable register using the *SRE query.

Clearing the Registers

Clear the Status Byte register by simultaneously clearing all event registers. This is done by
sending the *CLS command. You must send the command immediately following a Program
Message Terminator (an ASCII line feed character or the HP-IB END message). This
ensures that the register’s MAV and MSS bits will be cleared. Clear the Service Request
enable register by sending *SRE with a value of 0.

Register Summary Bit

Bit 6 of the Status Byte register summarizes all other enabled bits in the Status Byte
register, but only if you read the register with the *STB query.

Definition of Bits

Bits 1, 2, and 3 of the Status Byte register set are not used. The other bits in the set are
defined in the following sections. Unless otherwise noted, the definitions describe bits in the
Status Byte register, not the corresponding bits of the Service Request enable register.

5-8

Using the HP 35660A’s Status Registers

User_Status Event — bit 0

This bit summarizes all enabled bits of the User Status event register. The
User Status_Event bit is set to 1 when one of the following occurs:

» A bit in the User Status event register changes from 0 to 1 while the corresponding
bit of the User Status enable register is set to 1

* A bit in the User Status enable register changes from 0 to 1 while the
corresponding bit of the User Status event register isset to 1

To keep the User_Status_Event bit set to 1, there must be at least one case where
corresponding bits of the User Status event register and User Status enable register are both
set to 1. When there are no such cases, the bit is reset to 0.

Message_Avallable (MAV) -- bit 4

This bit indicates whether or not the analyzer’s output queue contains any response
messages. The bit is set to 1 when the output queue contains one or more messages. It is
reset to 0 when the output queue is empty.

Event_Status (ESB) — bit 5

This bit summarizes all enabled bits of the Event Status register. The Event Status bit is set
to 1 when one of the following oceurs:

» A bit in the Event Status register changes from 0 to 1 while the corresponding bit
of the Event Status enable register is set to 1

* A bit in the Event Status enable register changes from 0 to 1 while the
corresponding bit of the Event Status register is set to 1

To keep the Event_Status bit set to 1, there must be at least one case where corresponding
bits of the Event Status register and Event Status enable register are both set to 1. When
there are no such cases, the bit is reset to 0.

Request_Service (RQS) or Master_Summary_Status (MSS) — bit 6

This bit is unusual in that it provides different information depending on how the Status
Byte register is read. If you read the register with the *STB query, bit 6 summarizes all
other enabled bits in the Status Byte register. When bit 6 serves this function, it is known as
the Master_Summary Status (MSS) bit. T'he MSS bit is reset to 0 when either of the
following occurs:

 All enabled Status Byte bits are reset to 0

* All set Status Byte bits are disabled (corresponding bits of the Service Request
enable register are reset to 0)

5-9

Using the HP 35660A's Status Regisiars

If you read the Status Byte register with a serial poll, bit 6 tells you whether or not the
analyzer has requested service. When bit 6 serves this function, it is known as the

Request Service (RQS) bit. The RQS bit is reset to 0 by the same things that reset the MSS
bit. But in addition, the R@S bit is reset when the Status Byte register is read by a serial
poll. The serial poll does not change the setting of any other bit in the register, not even the
MSS portion of bit 6.

Because of the special function of the Status Byte register’s bit 6, the setting of the
corresponding bit in the Service Request enable register is ignored.

Device Status_Event — bit 7

This bit summarizes all enabled bits of the Device Status event register. The
Device_Status_Event bit is set to 1 when the following occurs:

* A bit in the Device Status event register changes from 0 to 1 while the
corresponding bit of the Device Status enable register is set to 1

* A bit in the Device Status enable register changes from 0 to 1 while the
corresponding bit of the Device Status event register is set to 1

To keep the Device_Status_Event bit set to 1, there must be at least one case where
corresponding bits of the Device Status event register and Device Status enable register are
both set to 1. When there are no such cases, the bit is reset to 0,

Event Status Register Set

The Event Status register set contains:

* The Event Status register (an event register)

* The Event Status enable register

Power-up States

Bit 7 of the Event Status register is set to one at power-up. All other bits of that register are
reset to O.

The state of the Event Status enable register is saved in nonvolatile memory when you send
the SYST:SAVE command. It can be recalled at power-up, depending on the setting of *PSC.
If *PSC is 0, the register’s state is recalled. If *PSC is 1, all of the register’s bits are reset

to 0.

Writing to the Registers

You can not write to the Event Status register. Write to the Event Status enable register
using the *ESE command.

5-10

Using the HP 35660A's Status Registers

Reading the Registers

Read the Event Status register using the *ESR query. Read the Event Status enable register
using the *ESE query.

Clearing the Registers

Clear the Event Status register either by reading the register with the *ESR query or by
sending the *CLS command. Clear the Event Status enable register by sending *ESE with
a value of 0.

Register Summary Bit
Bit 5 of the Status Byte register summarizes all enabled bits of the Event Status register.

Definition of Bits

Bit 6 of the Event Status register set is not used. The other bits in the set are defined in the
following sections. Unless otherwise noted, the definitions describe bits in the Event Status
register, not the corresponding bits of the Event Status enable register.

Operation_Complete (OPC) -~ bit 0
This bit is only set to 1 after the following two events occur in the order listed:
1. You send the *OPC command to the analyzer.

2. The analyzer completes all pending overlapped commands. (For more information,
see ‘““Synchronization” in Chapter 2.)

Once set, the bit can only be reset to 0 by clearing the register,

NOTE INIT.STAT STAR and INIT:STAT RUN are considered to be pending overlapped
commands whenever bit 7 {Measuring) of the Device Status condition register is
setto 1. As aresult, the setting of that bit can indirectly affect the setting of the
OPC bit. See the description of the Measuring bit to determine how it is set and
reset in different measurement situations.

5-11

Using the HP 35660A’s Status Registars

Request_Contrel (RQC) — bit 1
The analyzer sets this bit to 1 when both of the following are true:

* The analyzer is configured as an addressable-only HP-IB device (See “Controller
Capabilities” in Chapter 2.)

* The analyzer is instructed to do something (such as plotting or printing its display)
that requires it to take control of the bus

If the controller passes control to the analyzer more than ten seconds before or more than
five seconds after this bit is set, the analyzer automatically generates a device error and
passes control back. It passes control back to the address specified by the *PCB command.

Once set, the bit can only be reset to 0 by clearing the register.

Query Error (QYE) — bit 2

This bit is set to 1 when a query error occurs. See Appendix D for a list of conditions that
can cause query errors. Once set, the bit can only be reset to 0 by clearing the register.

Device_Error (DDE) — bit 3

This bit is set to 1 when a device-dependent error occurs. See Appendix D for a list of
conditions that can cause device-dependent errors. Once set, the bit can only be reset to 0 by
clearing the register.

Execution_Error (EXE) — bit 4

This bit is set to 1 when an execution error occurs. See Appendix D for a list of conditions
that can cause execution errors. Once set, the bit can only be reset to 0 by clearing
the register.

Command_Error (CME) — hit5

This bit is set to 1 when a command error occurs. See Appendix D for a list of conditions
that can cause command errors. Once set, the bit can only be reset to 0 by clearing

the register.

Power_On (PON)} — bit 7

This bit is set to 1 when you turn the analyzer on. Once set, the bit can only be reset to 0 by
clearing the register.

5-12

Using the HP 35660A’s Status Reqisters

Device Status Register Set

The Device Status register set contains:
* The Device Status condition register
» The Device Status positive transition register
* The Device Status negative transition register
* The Device Status event register

* The Device Status enable register

Power-up States

The state of the Device Status condition register is variable at power-up. All bits of all other
Device Status registers are reset to 0.

Writing to the Registers

You can not write to the Device Status condition register or to the Device Status event
register. Write to the other Device Status registers using the following commands:

*» STAT:DEV:PTR (for the positive transition register)
+ STAT:DEV:NTR (for the negative transition register)
* STAT:DEV:ENAB (for the enable register)

Reading the Registers

Read the Device Status registers with the following queries:
* STAT:DEV:COND? (for the condition register)
+ STAT:DEV:PTR? (for the positive transition register)
*» STAT:DEV:NTR? (for the negative transition register)
* STAT:DEV:EVEN? (for the event register)
* STAT:DEV:ENAB? (for the enable register)

Clearing the Registers

You can not clear the Device Status condition register. Clear the event register either by
reading the register with the STAT:DEV:EVEN query or by sending the *CLS command.
Clear the transition registers and the enable register by writing to them with a value of 0.

Register Summary Bit

Bit 7 of the Status Byte register summarizes all enabled bits of the Device Status
event register.

5-13

using the HP 35660A's Status Registers

Definition of Bits

Bits 8 through 15 of the Device Status register set are not used. The other bits in the set are
defined in the following sections. Unless otherwise noted, the definitions describe bits of the
Device Status condition register.

Ranging — bit0

This bit is only set to 1 when the analyzer’s autoranging routine is enabled and is currently
changing the range of one or both input channels. The bit is reset to 0 at all other times.
See the description of the INP:RANG:AUTO command for more information on autoranging.

Calibrating — bit 1

This bit is only set to 1 when the analyzer is calibrating. It is reset to 0 at all other times.
See the CAL:AUTO command for more information on calibration.

Rdy for_Trig — bit2

This bit is only set to one when the analyzer is ready to accept a trigger signal from one of
the trigger sources. It is reset to 0 at all other times. If a trigger signal is received before
this bit is set, the signal is ignored and the analyzer is not triggered. This bit is most usgeful
when you are using the HP-IB or the external trigger BNC as the trigger source. See
commands in the TRIGger subsystem for more information.

Rdy for Arm — bit 3
This bit is only set to 1 when both of the following are true:
* Manual arming is turned on (ARM:SOUR HOLD}
» The analyzer is waiting to be armed with the ARM:IMM command

The bit is reset to 0 at all other times. If you send ARM:IMM before this bit is set, the
command is ignored and the analyzer is not armed.

Data_Integrity — bit 4

This bit summarizes all enabled bits of the Data Integrity event register. The Data_Integrity
bit is set to 1 when one of the following oceurs:

* A bit in the Data Integrity event register changes from 0 to 1 while the
corresponding bit of the Data Integrity enable register is set to 1

* A bit in the Data Integrity enable register changes from 0 to 1 while the
corresponding bit of the Data Integrity event register is set to 1

To keep the Data_Integrity bit set to 1, there must be at least one case where corresponding
bits of the Data Integrity event reglster and Data Integrity enable register are both set to 1.
When there are no such cases, the bit is reset to 0.

5-14

Using the HP 35660A’s Status Ragisters

Settling — bit 5

This bit is only set to 1 when the analyzer is waiting for the digital filter to settle. It is reset
to 0 at all other times.

Applic_Running — bit 6

This bit is only set to 1 when an application is running on the analyzer. It is reset to 0 at all
other times. If you are using HP Instrument BASIC, this bit is only set when a program
is running.

Measuring — bit7

NOTE INIT:STAT STAR and INIT.STAT RUN are considered pending overlapped
commands any time this bit is set to 1. They are considered complete each time
this bit changes from 1 to 0. See “Synchronization” in Chapter 2 for more
information on overlapped commands.

There are three sets of rules for setting and resetting this bit. There is one set of rules for
each of the following measurement situations:

1. Measurement data is unaveraged (AVER:STAT OFF).

2. Measurement data is rms or vector averaged with uniform weighting
(AVER:STAT ON, AVER:TYPE RMS or VECT, and AVER:WEIG STAB).

3. Measurement data is averaged with exponential weighting or using the peak hold
function (AVER:STAT ON, and AVER:WEIG EXP or AVER:TYPE PEAK).

In the first situation, the bit is set to 1 most of the time a measurement is running.
However, each time one or both of the displays are updated with the latest measurement
data, the bit is briefly reset to 0. Whenever the measurement is paused, the bit remains at 0
until you restart the measurement. You can pause the measurement by sending INIT:STAT
PAUS or by pressing the analyzer’s Pause/Cont hardkey.

In the second situation, the bit is set to 1 whenever a measurement is running. The bit is
not briefly reset to 0 each time the displays are updated. It is only reset to 0 when the
measurement is paused. The analyzer automatically pauses the measurement when the
specified number of averages has been collected.

In the third situation, the bit is set to 1 until the first display update after the specified
number of averages has been taken. At that point, the bit is briefly reset to 0. Beyond that
point, the bit is set to 1 most of the time the measurement is running, but is briefly reset to 0
whenever a display is updated.

515

Using the HP 35660A’s Status Registers

Data Integrity Register Set
The Data Integrity register set contains:

* The Data Integrity condition register

The Data Integrity positive transition register

The Data Integrity negative transition register

The Data Integrity event register

The Data Integrity enable register

Power-up States

The state of the Data Integrity condition register is variable at power-up. All bits of all other
Data Integrity registers are reset to 0.

Writing to the Registers

You can not write to the Data Integrity condition register or to the Data Integrity event
register. Write to the other Device Status registers using the following commands:

* STAT:DINT:PTR (for the positive transition register)

+ STAT:DINT:NTR (for the negative transition register)
« STAT:DINT:ENAB (for the enable register)

Reading the Registers

Read the Data Integrity registers with the following queries:
* STAT:DINT:COND? (for the condition register)
* STAT:DINT:PTR? (for the positive transition register)
« STAT:DINT:NT?R (for the negative transition register)
« STAT:DINT:EVEN? (for the event register)
+ STAT:DINT:ENAB? (for the enable register)

Clearing the Registers

You can not clear the Data Integrity condition register. Clear the event register either by
reading the register with the STAT:DINT:EVEN query or by sending the *CLS command.
Clear the transition registers and the enable register by writing to them with a value of 0.

Register Summary Bit

Bit 4 of the Device Status condition register summarizes all enabled bits of the Data
Integrity event register.

5-16

Using the HP 35660A's Status Registers

Definition of Bits

Bits 1, 3 through 7, and 10 through 15 of the Data Integrity register set are not used.
The other bits in the set are defined in the following sections. Unless otherwise noted, the
definitions describe bits of the Data Integrity condition register.

Over_Range — bit 0

This bit is only set to 1 when the amplitude of a signal entering an input channel exceeds the
current range setting of that channel. The bit is set when this is true for either one or both
channels. Tt is reset to 0 at all other times.

NOTE When the analyzer is in the one-channel measurement mode (CONFTYPE SPEC),
channel 2 does not set the Over_Range bit unless the signal entering that channel
exceeds 27 dBVrms. This is because channel 2 is automatically set to its highest
range (27 dBVrms) when the one-channel mode is selected,

Uncalibrated — bit 2

This bit is only set to 1 when there are no calibration constants available to correct the
measurement data. It is reset to 0 at all other times. Calibration constants are always
available unless one of the following is true:

* The analyzer has been unable to complete a calibration

+ The analyzer has not been calibrated since the CLEAR. CAL CONSTANTS softkey
was pressed

*+ The analyzer has not been calibrated since the CAL:CLE command was sent

Limit_Fail A — bit 8

This bit is always reset to 0 when limit testing is turned off for display A. When limit testing
is turned on, the following rules determine when the bit is set and reset:

The bit is briefly reset to 0 each time measurement data is evaluated against the specified
limits. If the data passes the limit test, the bit remains at 0 until the next evaluation.
If the data fails the limit test, the bit is set to 1 until the next evaluation.

Measurement data is evaluated each time the display is updated (this occurs even if display
blankingison).

Limit_Fail B — bit 9_

The rules for setting and resetting this bit are the same as the rules for setting Limit_Fail A,
except that this bit monitors limit tests on display B.

5-17

Lising the HP 35660A's Status Registers

User Status Register Set
The User Status register set contains:

* The User Status event register
¢ The User Status enable register

Power-up States

All bits of the two User Status registers are reset to 0 at power-up.

Writing to the Registers

Write to the User Status event register using the USER:STAT:PULS command.
{Pressing one of the analyzer’s User SRQ softkeys also writes to the register) Write to
the enable register using the STAT:USER:ENAB command.

Reading the Registers

Read the User Status event register using the STAT:USER:EVEN query. Read the User
Status enable register using the STAT:USER:ENAB querv.

Clearing the Registers

Clear the User Status event register either by reading the register with the
STAT:USER:EVEN query or by sending the *CLS command. Clear the User Status enable
register by sending STAT:USER:ENAB with a value of 0.

Register Summary Bit

Bit O of the Status Byte register summarizes all enabled bits of the User Status event register.

Definition of Bits

The bits in the User Status register set are User_Status_0 through User Status_15. Bits 0
through 9 of the event register can be set either by pressing one of the analyzer’s User Status
softkeys or by sending a value with the STAT:USER:PULS command. Bits 10 through 15 of
the event register can only be set with the STAT:USER:PULS command. Once set, an event
register bit can only be reset to 0 by clearing the register.

5-18

Programming Examples

Chapter 6
Programming Examples

Introduction

This chapter contains listings of 11 example programs stored on the HP 35660A Getting
Started disc. The listings, which are organized alphabetically by filename, demonstrate
many important programming concepts, including:

* Measurement synchronization
* Passing control
*+ Transferring data

* Generating service requests (SRQs)

All of the programs were written in HP BASIC 5.0 for use on an HP Series 200 computer.
However, numerous comments make it possible for you to adapt the programs to other
languages and computers.

6-1

Programming Examples

Example 1.
10 |RASIC Program: DATATBL - Ioad and Read a Data Table
20 f
30 IThis program is divided into three parts. The first part
40 laccepts x-values for the data table from the keyboard. The
50 !second part sends the data table to the instrument. Part
60 lthree initiates a measurement, waits for the measurement to
70 lcomplete, and then reads and displays the x and y-values.
80 INOTE: Use HP35660A front panel keys to view data table.
a0 !
100 Scode=7 {Interface select code
110 Address=11 {address for HP 35660A
120 Dsa=Scode*100+Address
130 DIM Data_tbl{1:20,1) 120 x 2 data table array
140 INTEGER ¥,Y
150 X=0 !X index for array {always = 0}
160 ¥Y=1 'Y index for array (always = 1)
170 !
180 ASSIGN @Dsa TO Dsa;FORMAT ON !Use for ASCII data
190 ASSIGN @Dsa off TO Dsa;FORMAT OFF !Use for binary data
200 i
220 CLEAR SCREEN
230 OUTPUT @Dsa;"MARK:DTAB:HEAD:AFOR FP64"™ !Set up for binary transfers
240 !
250 Generate table: IEnter data from keyboard
260 INPUT "Number of points in table?",Num_points
276 FOR I=1 TO Num peoints
280 DISP "Enter x-axis value for data point #";I:
290 INPUT New point
300 Data_tbl(I,X)=New point ISave point into point array
310 PRINT I,New point IDisplay the new point
120 NEXT 1
330 !
340 Send_table: iSend table to instrument. Only X values can be sent
350 IBuild a header
360 Block count=Num points*3 INumber of bytes in data block
370 Byte count=LEN(VALS(Block count}) 'Number of digits in Block count
380 !
390 OUTPUT &Dsa;"MARK:A:DTABL:DATA"; Istart sending the data

400 iFirst send the data block header
410 OUTPUT @Dsa USING "#,A,D,"SVALS(Ryte count)&"D";"#", Byte count, Block count
I

420 :

430 FOR I=1 TO Num points {Start sending the data block

440 OUTPUT @Dsa off;Data_tbl(I,X); !QUTPUT each data point

450 NEXT I

460 OUTPUT @Dsa;CHRS (10) foutput a LF character (EOL)

470 !

480 Read_table: 'Read and display the data table after a completed measurement

490 CLEAR SCREEN
500 DISP "Starting the measurement...";

510 OUTPUT @Dsa;"MARK:A:DTAB:STAT ON" iTurn the calculation on

520 OUTPUT @Dsa;:"INIT:STAT STAR;*WAI'™ !8tart the measurement

530 !

540 QUTPUT @Dsa;"MARK:A:DTABL:DATA?M IRead table after measurement done

550 ENTER @Dsa USING "#,A,D";AS$,Byte_count !first byte of block header
560 ENTER @Dsa USING "#,"&VALS (Byte count)&"D";Block_count
570 DISP "DONE"

580 ¢

590 PRINT TABXY(4,1);"X";TABXY(11,1);"RESULTS";TABXY (24,1} :"Y"

600 FOR I=1 TO (Block count/8}/2 'FOR I=2 TO ‘Pairs of FP numbers’

610 ENTER €Dsa_off;Data tbl(I,X), Data_tbl(I,Y) tRead X,Y

620 PRINT TAB(1);Data tbl(I,X);TAB(20);Data_tbl(I,Y) IPRINT X,Y
630 NEXT T

640 ENTER @Dsa USING "A";AS \Read LF character at end of block
650 f

660 END

Example 2.

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
530
600
610
620
630
640
650

Programming Examples

! BASIC Program: DUMPTRACE - Reading trace data
! Read the coordinate transformed data from Trace A
1
Scode=7 ! Interface select code
Address=11 !Address of HP 35660A
Dsa=Scode*100+Address
ASSIGN @Dsa off TO Dsa;FORMAT OFF
CLEAR SCREEN
|
DIM Tracel(1:401) !Most displays return 401 points
DIM Trace2(1:1024) !Time display can return 1024 points
DIM Name$[80] 'Trace title
INTEGER Byte countl !Number of bytes in Block count
INTEGER Block count !Number of bytes in data block
i
OUTPUT Dsa;"DISP:HEAD:AFOR FP&4" !set txfer format to binary
OUTPUT Dsa;"DISP:A:DATA?" |Request the display data block
|
! Read the data block header. The header consists of a 4’ followed
! by: a single digit ASCII number,a second ASCII number, the data block,
! and a terminator. The single digit indicates how many bytes make up
! the second number. The second number indicates how many bytes are
! in the data block. For FP64 there are 8 bytes for every data point.
! Example (401 points): #43208<3208 bytes><LF>
|
ENTER Dsa USING "%,A,D";AS$,Byte countl
ENTER Dsa USING "%,"&VALS (Byte countl)&"D™;Block count
Num_points=Block count/8
SELECT Num_points !Select the right sized array
CASE 401
ENTER @Dsa off;Tracel(*) !Read the 3208 bytes into 401 points
Max val=MAX(Tracel(*)} !Find the peak value
CASE 1024
ENTER @Dsa_off;Trace2 (*) 'Read the 8192 bytes into 1024 points
Max_val=MAX(Trace2 (*)) 'Find the peak value
CASE ELSE
DISP "This program can’‘t handle block sizes of";Num _pcints
CLEAR Dsa IClear unread data from HP35660A output buffer
GOTO End
END SELECT
1
ENTER Dsa USING "AM™;AS IRead termination character
PRINT "“Successfully read ";Num points;"Data points"
I
OUTPUT Dsa;"DISP:A:HEAD:NAME?" !'Read the Trace title
ENTER Dsa;Name$
OUTPUT Dsa;"DISP:A:HEAD:XOR?" 'Read the x—axis starting value
ENTER Dsa;X start
OUTPUT Dsa;"DISP:A:HEAD:XINC?" !Read the x-axis increment/bin
ENTER Dsa;Xinc
OUTPUT Dsa;"DISP:A:HEAD:XUN?" 'Read the x-axis units
ENTER Dsa;X_units$
QUTPUT Dsa;"DISP:A:HEAD: YUN?" 'Read the y-axis units
ENTER Dsa;¥ units$
X_stop=(Num_points-1)*Xinc+X start !Calculate the x-axis ending value
1
PRINT "Trace title is: ";Name$
PRINT USING MK,6D.5D,X,K";"Start:",X start, FNStrip$(X units$)
PRINT USING "K,6D.5D,X,K";"Stop :",X stop,FNStrip$ (X units$)
PRINT USING "K,X,6D.5D,X,K";"Maximum value is:",Max val,FNStrip$(Y units$)
End:LOCAL Dsa !Return the 35660A to Local
END
DEF FNStrip$ (AS) !Strip quotes from around string
RETURN A%$[2,LEN(A%)-1] 'Return all but first and last characters
FNERD

6-3

Programming Examples

Example 3.

6-4

460
470
480
490
8GO0
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

‘BASIC Program: EXPAND - Read/Write complex trace data

'Des1gned to demonstrate how to read and write a complex trace,
'this program will read a trace, expand it around the current
!marker position and then send the trace back to the HP35660A.
{The amount of expansion is selected u51ng softkeys. To keep
{the program as simple as possible, prov151ons for handling real

'time data (1024 x 1 points) were not incorporated.
1

Zoom=0 !Current zoom factor, 0 indicates no valid data
Scode=7 !Interface select code

Address=11 {Address for HP 35660A

Dsa=Scode*100+Address

|

DIM Trace in{511,1) !Array for trace read ©512x2 points

DIM Trace out(511,1) {Array for expanded trace 401x2 points

|

ASSIGN @Dsa TO Dsa;FORMAT ON ‘Use for ASCII

ASSIGN @Dsa off TO Dsa;FORMAT OFF !Use for binary
|

!Set up softkeys

KBD CMODE ON

ON KEY 0 LABEL "READ TRACE" GOSUB Read trace

ON KEY 1 LABEL "RESTORE TRACE" GOSUB Restore trace
ON KEY 2 LABEL "ZOOM 2X" GOSUB Expand by_two

ON KEY 3 LABEL "ZOOM ?X" GOSUB Expand by arb

ON KEY 4 LABEL "AUTO S5CALE" GOSUB Auto_scale

FOR I=5 TO 9 1Clear unused softkeys
ON KEY I LABEL "" GOTO Wait

NEXT I

t
Wait:LOOP !Wait here for key press

END LOOP

L}
Read_ trace: !Subroutine to read a 512 x 2 point trace

DISP "Reading trace data...™
INTEGER Byte count,Block count

CUTPUT €Dsa;"TRAC:HEAD:AFOR FP6&4" !Set data transfer to binary

OUTPUT €Dsa;"TRAC:DATA?Y !Request data

ENTER @Dsa USING "%,A,D";AS$,Byte count {Read block header

ENTER @Dsa USING "%, "&VAL$(Byte count) &"D" ; Block_count

ENTER @Dsa_off; Tracemln(*) !Read the data block

ENTER €Dsa USING "A";A$!Read LF character

1

OUTPUT @Dsa;"TRAC:HEAD:XOR?" 'Read x-axls origin

ENTER @Dsa;X_origin

OUTPUT @Dsa ;"TRAC:HEAD:XINC?" 'Read x-axis increment/bin

ENTER @Dsa;X_incr

OUTPUT @Dsa;"TRAC:HEAD:XUN?" !Read x-axis units

ENTER @Dsa;Xunit$s

OUTPUT @Dsa;"TRAC:HEAD:YPO?" !Read y-points/bin

ENTER @Dsa;Ypo

IF Ypo=2 THEN {Check for complex data
Zoom=1 tAllow zooming, current zoom=1
OUTPUT @Dsa;"MARK:A:STAT ON" !Make sure marker is on

DISP "Move marker to center of expansion before zooming."
ELSE
BEEP
Zoom=0
DISP "Can’t expand real time data —-- only complex."
END IF
LOCAL Dsa {Return the analyzer to LOCAL

RETURN
!

Restore trace: !RESTORE TRACE softkey pressed. Send original trace back

IF Zoom=0 THEN GOTC No_data {No valid data, abort

Programming Examples

Example 3 (continued.)

670 Zoom=1 INew zoom value

680 GOTO Do it !Do the zoom

690 !

700 Expand_ by two: 1Z00M 2X softkey pressed. Change zoom by two.

710 IF Zoom=0 THEN GOTC No_data !No valid data, abort

720 Zoom=2*Zoom !New zoom value

730 GOTO Do_it !Do the zoom

740 !

750 Expand by arb: 1Z00M ?X softkey was pressed, enter zoom value

760 IF Zoom=0 THEN GOTO No_data !No valid data, abort

770 !

780 REPEAT

750 INPUT "Enter zoom factor: ",Zoom entry

800 UNTIL Zoom entry>0 !Den’t allow negative numbers
810 Zoom=Zoom entry*Zoom !New zoom=entry*current zoom
820 GOTO Do_it !Do the zoom

830 !

840 Do _it: !Do the zoom

850 IF Zoom<>1 THEN GOSUB Expand !Calculate new trace

860 GOSUB Read out !Send new trace to analyzer
870 LOCAL Dsa !Return the analyzer to LOCAL
880 RETURN !Return from ON KEY

890 !

900 No_data:BEEP !Haven’t got valid data yet
910 DISP "READ TRACE first"

920 RETURN IReturn from ON KEY

930 !

940 Auto_scale: {Send an auto-scale instruction te the analyzer

950 OUTPUT @Dsa;"DISP:A:SCAL:AUTO:SING"
960 ILOCAL Dsa

970 RETURN !Return from ON KEY

980 f

990 Expanrd: !

1000 INTEGER J,Index_in,Index out,I

1010 !

1020 DISP "Expanding Trace ..."

1030 OUTPUT €Dsa;"MARK:X?" IRead marker frequency

1040 ENTER @Dsa;Marker x
1050 !Calculate bin number for unzoomed trace
1060 Marker bin=(Marker x-X origin)/X incr

)

1076 !

1080 I=0

1090 IF Xunit$[2,2]="S" THEN ICheck for time trace (units=Seconds)
1100 Top bin=511 !Use all 512 points of time trace
1110 Center bin=256

1120 ELSE

1130 Top bin=400 'Use first 401 points of freq trace

1140 Center bin=200
1150 END IF

1160 Index out=Center bin !'start in the middle of Trace out()
1170 WHILE Index out<=Top bin 'and work up to the top

1180 Index in=Marker bin+(I DIV Zoom) !Calculate which bin to get data from
1190 IF Index in<=Top bin THEN !Use data from Trace in()

1200 Trace out(Index out,0)=Trace_in(Index in,0) !Real part

1210 Trace_out (Index out,l)=Trace in(Index in,1) ! Tmaginary part

1220 ELSE !Ran out of data, use 0

1230 Trace_out (Index out,0)=0 !Real Part

1240 Trace_cut (Index_out,1)=0 !Imaginary Part

1250 END IF

1260 Index out=Index ocut+l !Next bin up

1270 I=I+1

1280 END WHILE

1290 I=0

1300 Index out=Center bin-1 !start at middle-1 and work down
1310 WHILE Index out>=0

1320 Index in=Marker bin-{I DIV Zoom)-1 6-5

Programming Examples

Example 3 (continued)

6-6

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660

IF Index_in>=0 THEN !Use data from Trace in()
Trace out(Index out,0)=Trace_ in(Index_ in,0) !Real part
Trace out(Index out,l)=Trace_in(Index in,1) ! Imaginary part

ELSE {Ran out of data, use 0
Trace_out (Index out, 0)=0
Trace_ out(Index out,1l)=0

END TF
Index_out=Index out-1 {Next bin down
I=I+1
END WHILE
RETURN !Return to Do it
1
Read out: !Subroutine to send trace data back to the analyzer
DISP "Current zoom factor = ";Zoom !Show the current zoom
]
IF Zoom=1l THEN !Restore original x-axis scale
OUTPUT @Dsa;"TRAC:HEAD:XOR ";X_origin !Set x~axis origin
OUTPUT @Dsa;"TRAC:HEAD:XINC "“;X incr !Set x-axis increment/bin
ELSE !Set new x-axis scale

OUTPUT @Dsa;"TRAC:HEAD:XOR ";Marker x-Center bin*X incr/Zoom
OUTPUT @Dsa;"TRAC:HEAD:XINC ";X incr/Zoom

END IF

OUTPUT @Dsa;"TRAC:HEAD:YPO ";Ypo !Set y-points/bin
1

OUTPUT @Dsa;"TRAC:DATA™; !Data’s on its way

IF Zoom=1 THEN {Send the original data back

OUTPUT @Dsa USING "#,A,D,4D";"4",4,512*2*8 !Send a header ’#48192'
OUTPUT @Dsa_off;Trace_in(*),CHRS$(10)

ELSE !Send the expanded data back
CUTPUT @Dsa USING "“#,A,D,4D";"#" 4 ,512%2#%8 !Send a header ’‘#48192’
OUTPUT @Dsa_ off;Trace out(*),CHR$ (10}

END IF

RETURN

Prog end:END

Programming Examples

Example 4.
10 !BASIC Program: LIMITTBL - Downloading a limit table
20 !
30 !This program creates a new limit table from information stored
40 !in DATA statements and downloads that table into the HP 35660A
50 !
60 Scode=7 !Interface select code
70 Address=11 'Address for HP 35660A
80 Dsa=Scode*100+Address
90 ASSIGN @Dsa TO Dsa;FORMAT ON IUse this IO path for ASCIT data
100 ASSIGN @Dsa off TO Dsa;FORMAT OFF 'Use this IO path for binary data
1106 !
120 DISP "Presetting the HP35660A..."
130 OUTPUT &Dsa;'"*RST" IPreset the HP35660A
140 OUTPUT @Dsa;"DISP:A:SCAL:STOP -51 DBVRMS" !set display scale
150 OUTPUT @Dsa;"DISP:A:SCAL:DIV 10 DB;*0PC?M
160 ENTER @Dsa;Opc !Wait here until setup complete
170 !
180 DIM Table(1:20,1:5) 120 segments, 5 pts/seq
190 QUTPUT @Dsa;"LIMIT1:TABL:HEAD:AFOR FPe64" !Set up for binary transfer
200 !
210 DISP "Generating limit table...";
220 IFirst number in DATA is the number of segments defined
230 READ Segment count
240 !
250 FOR I=1 TO Segment count IRead data for each segment
260 FOR J=1 TO 5 IRead all five segment parameters
270 READ Table(I,J)
280 NEXT J
290 NEXT I
300 !
310 Output table: !Send the data in Table() to the 35660A as LIM1
320 Block count=Segment count*5*8 '8 bytes/number, 5 numbers/seq
330 Byte count=LEN (VAL$(Block count)) !Number of digits in Block count
340 4
350 OUTPUT @Dsa;"LIM1:TABL:DATAM; 'Tell HP35660A that data is coming
360 1Send the data header "#<byte count><block count>"
370 OUTPUT @Dsa USING "#,A,D,"&VALS (Byte _count) &"D";"4",Byte count,Block count
380 1
390 FOR I=1 TO Segment count
400 FOR J=1 TC 5
410 OUTPUT @Dsa_ off;Table(I,J); !Send data in 64 bit floating point format
420 NEXT J
430 NEXT I
440 OUTPUT €Dsa;CHRS(10) {OUTPUT a L¥ character to end block
450 OUTPUT @Dsa;"DISP:A:LIM 1" !Associate table 1 with trace A
460 OQUTPUT @Dsa;"DISP:A:LIM:LINE ON“ !Turn the limit lines on
470 DISP "DONE"
480 STOP
490 f
500 !DATA for Limit lines
510 !Total number of segments in table
520 DATA 6
530 !
540 !The data (one segment per line) is arranged as:
550 ! DATA x-start, x-stop, y-start, y-stop, y-flag
560 INOTE: Values assume units for trace A (e.g. Hz and dBVrms)
570 DATA 110060, 13600, =100, =60, O
580 DATA 12360, 21300, -80, -80, O
590 DATA 20000, 22600, -100,-60, O
600 DATA 30000, 32600, -100, -60, O
610 DATA 25800, 34200, -100, -100, O
620 DATA 28400, 36800, -60,-60, O
630 END

6-7

Programming Examples

Example 5.

6-8

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

!BASIC program: MEAS SYNC - Measurement synchronization
|

!This program demonstrates how to use the MEASURING bit in
!the DEVICE STATUS register to interrupt a program when a

Imeasurement is complete.
!the marker value with every trace update.

1

écode27
Address=11

Dsa=Scode*100+Address
1

The program will read and display

!Interface select code
!Address for HP 35660A

DISP "Presetting the HP35660A..."
OUTPUT Dsa;"*RST; *0pC?"

ENTER Dsa;Opc

QUTPUT Dsa:"SWE:TIME 2"

OUTPUT Dsa;"AVER ONY

!'Preset the HP35660A

'Wait here until preset complete
!Set record length to 2 seconds
ITurn averaging on

OUTPUT Dsa;"AVER:TYPE RMS;WEIG EXP" !Set averaging type to EXPON
QUTPUT Dsa;"AVER:COUN 2%
|

OUTPUT Dsa;"*CLS"

!Set number of averages

!Clear STATUS BYTE register

QUTPUT Dsa;"STAT:DEV:NTR 128" !Program DEVICE STATUS NTR register
OUTPUT Dsa;"STAT:DEV:ENAB 128" !Program DEVICE STATUS ENAB register

QUTPUT Dsa;"“*SRE 128"

!Program STATUS BYTE ENAB register

ON INTR Scode,2 GOSUB Srg_handler !Set up interrupt branching

ENABIE INTR Scocde;2
!

!Allow interrupt on SRQ

OUTPUT Dsa;"INIT:STAT STAR" !Start the measurement
DISP "Waiting for first measurement to complete...®

Idle:
GOTO Idle
f

Srg_handler: IGot an SRQ

Stb=SPOLL(Dsa)

!Wait here for interrupt

'Read STATUS BYTE and clear SRQ

OUTPUT Dsa;"STAT:DEV:EVEN?"Y IRead and clear DEVICE STATUS EVENT reg.

ENTER Dsa;Dse
!

OUTPUT Dsa;"MARK:A:AMPL?Y

ENTER Dsa;Mark ampl
DISP “"Marker amplitude
s

ENABLE INTR Scode
RETURN

!

END

- "
-

!Read the marker amplitude
iMark_ampl

!Re-enable the interrupts

Example 6.

310

330
340
350
360
370

Programming Examples

!HP-IB program: OPC_SYNC - Measurement synchronization
!
!This program demonstrates the how to use the *0OPC command to
tallow an SRQ to interrupt program execution. *0PC will set
{the OPERATIONTCOMPLETE bit in the EVENT STATUS register
!'when all pending HP-IB commands have finished. With the proper
{register masks, this will generate a service request.
f
Scode=7 !Interface select code
Address=11 {Address for HP 35660A
Dsa=Scode*100+Address
]
OUTPUT Dsa;"SWE:TIME 8" 'Set record length to 8 seconds
OUTPUT Dsa;"*CLS" !Clear the STATUS BYTE register
OUTPUT Dsa;"*ESE 1" 'Program the EVENT STATUS ENABLE req.
OUTPUT Dsa;"*SRE 32" 'Program the STATUS BYTE ENABLE reg.
|
ON INTR Scode,? GOTO Srg handler !Set up interrupt branching
ENABLE INTR Scode:2 !Allow SRQ to generate an interrupt
|
OUTPUT Dsa;"INIT:STAT STAR" Istart the measurement
OUTPUT Dsa;"+0pC" !Generate SRQ when all commands have
tfinished.
Start time=TIMEDATE
1LoOP !Do something useful while waiting
DISP USING "14A, 2D.D";"Elapsed time :",TIMEDATE-Start time
WATT .1
END LOOP
|
Srg _handler: !Got an SRQ
Sth=SPOLL(Dsa) IRead STATUS BYTE and clear SRQ
BEEP
OUTPUT Dsa;"*ESR?" IRead and clear EVENT STATUS reg.
ENTER Dsa;Esr
DISP "Got the SRQ! SPOLL returns:";5tb;" ESR returns:";Esr
END

6-9

Programming Examples

Example 7.
10 !BASTC program: OPCQ SYNC - Measurement synchronization
20 !
30 ! This program demonstrates how to use the *QOPC? HP-IB command
40 ! to hang the bus on a query before continuing on with the
50 ! BASIC program. After all pending HP-IB commands have finished,
60 ! the HP35660A will return a ‘1’ in response to *OPC?.
70 !

80 Scode=7
90 Dsa=Scode*100+11

100 !

110 DISP "Presetting the HP35660A..."

120 OUTPUT Dsa;"*RST" |Preset the HP3S5660A

130 OUTPUT Dsa;"*xOpC?t !Pause on ENTER statement until
140 ENTER Dsa;Opc L #*RST/ command has finished
150 !

160 OUTPUT Dsa;"SWE:TIME 8" !1Set record length to 8 seconds
170 DISP "Measurement started ..."

180 OUTPUT Dsa;"INIT:STAT STARY !Start the measurement

190 QUTPUT Dsa;"*0pPC?" 'Pause until all pending HP-IB commands
200 ENTER Dsa;Opc 'have finished.

210 BEEP

220 DISP "Measurement done"

230 END

6-10

Example 8.

240
250
260
270
280 Wa
290
300 !

Programming Examples

BASIC Program: PASSCNTL ~ Passing control to HP35660A

This program instructs the HP35660A perform a screen dump to a

passed to the HP35660A when the print command is issued and

I
!
!
! printer and generate a service request when done. Control is
1
!

automatically passed back when the instrument nc longer needs it.

1

Scode=7
Address=11
Dsa=Scede*100+Address

OUTPUT Dsa;"+*CLS"
!

!'Tnterface select code
'Address for HP35660A

!Clear the STATUS BYTE register

! Program the instrument to generate SRQ on OPERATION_COMPLETE. This
! requires programming the STATUS BYTE and EVENT STATUS enable regs.

CUTPUT Dsa;"*ESE 1"

OUTPUT Dsa;"*SRE 32"

OUTPUT Dsa;"GPIB:LEDS ON"
OUTPUT Dsa;"*PCB 21"

!

ON INTR Scode GOTO Srg _handler
ENABLE INTR Scode;?2

1

DISP “"HP35660A Printing screen..

OUTPUT Dsa;"PRIN:DUMP: SCR"
OUTPUT Dsa;"*0OPC"

PASS CONTROL Dsa

t

it_here:

GOTO Wait _here

310 Srg_handler:

320
330
340
350
360
370
380
390

IF BINAND(SPOLL(Dsa),64) THEN
BEEP
DISP YHP35660A Done Printing®
ELSE
DISP "UNKNOWN SRQ"
END IF
END

!Bit 1 = OPERATION COMPLETE

!Bit 5 = EVENT_STATUS

!Turn on HP-IB status LED’s

!Set up Pass control back address

ISet up interrupt branching
!Enable interrupt on SRQ

{Instruct analyzer to print the screen
{Set OPC bit when everythings complete
!Give control of the bus to the 35660A

IWait for OPC to generate an interrupt

If there’s an interrupt, then
!Control was passed back
IHP35660A is requesting service

it wasn’t the HP35660A

Programming Examples

Example 9.
10 ! HP-IB Program: USERSR(} - Responding to USER SRQ’s
20 !
30 ! This program demonstrates how user generated service
40 ! requests can be used to interrupt a program.
50 !
60 Scode=7 IInterface select code
70 Address=11 'Address of HP35660A
80 Dsa=Scode*100+Address
90 INTEGER User_status reg 116 bit integer
100 !
110 OUTPUT Dsa;"*CLS" {Clear the STATUS BYTE register
120 !
130 |Set USER STATUS ENABLE register to all 1’s.
140 OUTPUT Dsa;"STAT:USER:ENAB 65535" | 65535 = 1+2+4+8+....+2"15
150 !

160 !set STATUS BYTE ENABLE register for SRQ on USER STATUS EVENT only
170 OUTPUT Dsa;"*SRE 1"

180 LOCAL Dsa !Put the instrument in LOCAL mode
190 !

200 !Instrument is set up; Enable interrupts to detect an SRQ

210 ON INTR Scode GOSUB Srqg handler !Set up interrupt branching

220 ENABIE INTR Scode;?2 !Enable interrupt on SRQ

230 !

240 CLEAR SCREEN IClear the text

250 Wait:DISP “On the HP35660A, Press [Local HP-IB] <USER SRQ> <SROx>"
260 GOTO Wait Iwait for SRQ to occur

270 !

280 Srg_handler: !

290 IF BINAND{SPCLL(Dsa),64) THEN I{Bit 6 set, HP35660A needs service
300 BEEP

310 OUTPUT Dsa;"STAT:USER:EVEN?" !Read USER STATUS EVENT register
320 ENTER Dsa;User_ status reg

330 !

340 ! Check all 16 bits in the USER STATUS EVENT register

350 ! Note: Bits 10-15 can only be set via HP~IB

360 FOR Usrg_number=0 TO 15

370 IF BIT(User_status reqg,Usrg number) THEN

380 SELECT Usrg_number

390 CASE O

400 GOSUB Service usrqg0 !Gosub service routine for USER SRQ 0
410 CASE 1

420 GOSUB Service usrgl !Gosub service routine for USER SRQ 1
430 CASE 2 TO 15

440 GOSUB Service usrgx !Goto service routine for other USER SRQ’s
450 END SELECT

460 END IF

470 NEXT Usrq_number

480 ENABIE INTR Scode |Re~enable interrupts

490 LOCAL Dsa !{Put the HP35660A in local mode

500 EISE

510 BEEP

520 DISP "UNKNOWN INTERRUPTY 'Interrupt wasn‘t from HP356604A,

530 STOP !Stop the program.

540 END IF

550 RETURN

560 Service usrqgoO: !Service routine to handle USER SRQ 0
570 PRINT "User pressed SRQ 0"

580 RETURN

590 Service usrgl: !Service routine to handle USER SRQ 1
600 PRINT "User pressed SRQ 1"

610 RETURN

620 Service usrgx: !Service routine to handle cother USER SRQ’s
630 PRINT "USER SRQ was between 2 and 15"

640 RETURN

650 END
6-12

Programming Examples

Example 10.
10 !BASIC program: WAT SYNC - Measurement synchronization
20 !
30 !This program demonstrates how to use the *WAI command to
40 !prevent execution of an HP-IB command until all previous
50 !commands have finished. In this example, the trace display
60 !will not change to the UPPER/LOWER FORMAT until after the
70 !measurement has finished.
80 !
90 !The *WAT command deoes not affect program operation. The
100 Iprogram will run to completion, sending all of the commands to
110 to the HP35660A without waiting for them to be executed.
120 1
130 Scode="7 !Interface select code
140 Address=11 !HP-IB address for HP 35660A
150 Dsa=Scode*100+Address
i60 !
170 DISP "Sending HP-IB commands..."
180 OUTPUT Dsa;"SCR:FORM SING" !Set display format to SINGLE.
190 QUTPUT Dsa;"SWE:TIME &" 1Set record length to 8 seconds
200 OUTPUT Dsa;"INIT:STAT STAR™ 18tart the measurement
210 QUTPUT Dsa;"*WAI" !Tell analyzer to wait here until
220 'all HP-IB commands have finished
230 OUTPUT Dsa;"SCR:FORM ULOW" {Go to upper/lower after waiting
2490 BEEP
250 DISP "Finished. Display will go to UPPER/LOWER when measurement done"
260 END

6-13

Programming Examples

Example 11.

6-14

IBASIC Program: WINDOW -~ Program for user defined windows
]

!This program demonstrates how to use waveform math to implement
luser defined windows. Before running the program, set the start
| frequency and span for the measurement. The window will be complex

| for zoomed measurements and real for baseband measurements.
|

Scode=7 !Interface select code
Dsa=100*Scode+11 'HP35660A at address 11

DIM Window(1023) 11024 pt array for window

|

ASSIGN €Dsa_off TO Dsa;FORMAT OFF !TI0 path for binary data

|

OUTPUT Dsa;"USER:EXPR Fl, (TIME1l/TIME1)" !Define a unitless time trace
OUTPUT Dsa;"TRAC:A:RES F1Y !Set trace A to Math F1
OUTPUT Dsa;"TRAC:HEAD:XOR?"

ENTER Dsa;Xor !Read the start time

OUTPUT Dsa;"TRAC:HEAD:XINC?"

ENTER Dsa;Xinc !Read the time interval
OUTPUT Dsa;"TRAC:HEAD:YPO?" 'Read Y points/bin

ENTER Dsa;Ypo !Data is complex if Ypo=2

|

Gen_window (Window(*) ,Ypo) !'Build the window function

|

DISP "Writing window to trace A..."

OUTPUT Dsa;"TRAC:HEAD:XOR ";Xor !Define the start time

OUTPUT Dsa;"TRAC:HEAD:XINC ";Xinc 'Define the time interval
OUTPUT Dsa;"TRAC:HEAD:YPO ";¥po !1 or 2 Y points/point
OUTPUT Dsa;"TRAC:DATA"; !Put window data intoc trace A
OUTPUT Dsa USING “#,A,D,4D";"#", 4,1024*8 !Send a header ’#46416’
OUTPUT @Dsa_off;Window(*) ,CHRS (10} !Send data and block terminator
i

OUTPUT Dsa;"DISP:A:AXIS REALM !Display the real part

OUTPUT Dsa;"DISP:A:SCAL:AUTO:SING" 'Autoscale the display

DISP "Saving the window in ’RAM:HANNING'..."

OUTPUT Dsa;"MMEM:STOR:TRAC:A ‘RAM:HANNING' ;*QPC?" ISave the window
ENTER Dsa;Opc 'Wait for save to finish
|

!Use the window to do a spectrum measurement. Keep TIMEl first in
lthe math expression for correct x-axis start/stop values.
OUTPUT Dsa;"USER:EXPR F1, (FFT(TIME1*’RAM:HANNING’))}" !Define math F1

OUTPUT Dsa;"TRAC:A:RES F1" !Set trace A to Math Fl
DISP "Starting the measurement..."
OUTFUT Dsa;"INIT:STAT STAR" !Start the measurement
QUTPUT Dsa;"DISP:A:AXIS LOGM;*WAI; :DISP:A:SCAL:AUTO: SING"
f
IOCAL Dsa !Return the HP35660A to LOCAL
DISP "Program finished"
END
]
SUB Gen window(Wind(*),hYpo) !Subroutine to generate HANNING window
RAD !'work in radians
DISP "Generating data for HANNING window..."
Const=2%PI/1023 Do this calculation once
IF Ypo=1 THEN Window is real. 1024 x 1
FOR I=0 TO 1023
Wind(I)=1.0+COS(I*Const+PI) iGenerate window function
NEXT I
ELSE !Window is complex. 512 x 2
FOR I=0 TO 1023 STEP 2
Wind (I}=1.0+COS(I*Const+PI) |Generate real point
Wind (I+1)=0.0 !Set imaginary point to ©
NEXT I
END IF
SUBEND

Chapter 7
Command Reference

Introduction

This command reference describes all of the HP 35660A’s HP-IB commands. Figure 7-1
shows you the fields included in the command descriptions:

A summary of important command attributes.
One or more example statements that incorporate the command.
Command and/or query syntax.

The format of returned data (for commands that have query forms).

Qe D

A detailed command description.

Commana Referencn

*ESE[?] command/query

Owverlapped: no

Detayed result no @
Pass contral required: no

Frowerup state; depandent o seting of *PSC

@ Example Statements: ovrpur vi1;**ESE 10

OUTPNT 71L;TYESE?"

Command Syntax: “ESE<sp=<value>

@ <walua > =any intager ¥, where t € x = 2535 (NT formad)
Guery Syntax: TESE?
Returned Format: <viluer cLF><~END=

<value>i=an integer (INR1 formath

Description:

® ®

This command alkows you to set bits in the Event Status enable register. Assign a decimal
weight to sach bit you want set according 12 the formula

2\ nis_number!

with acceptable values for bit_number heing O through 7. Then add tha weights of ali sut
hits and send the sum with this command,

When an enable register bit is set to I, the corresponding bit of the Event Status register is
enabled. The enabled bit will e included in the Hvent Status summary.

Figure 7-1. Sample Command Description

The overlapped, delayed result, and pass control attributes are described in Chapter 2,
“Behavior in an HP-IB System.” All example statements are written in HP BASIC 5.0 for an
HP Beries 200 computer. Returned Format deseribes the format of returned data when
SYST:HEAD is OFF. See the SYST:HEAD command for information about the format of
returned data when SYST:HEAD is ON.

7-1

Command Reference

Conventions

Syntax and returned format descriptions use the following conventions:

* < > Angle brackets enclose the names of syntactic items that need further
definition. The definition will be included in accompanying text or in the
summary of common definitions that follows this section.

+ = “is defined as’’> When two items are separated by this symbol, the second
item can replace the first in any statement that contains the first item. For
example, A:: =B indicates that B can replace A in any statement that contains A.

* | “or” When items in a list are separated by this symbol, one and only one of
the items can be chosen from the list. For example, A|B indicates that A or B
can be chosen, but not both.

* ... An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

* [1 Square brackets indicate that the enclosed items are optional.

o ~ =~ Tildes surround items that are understood as the default when none of
the items in a list are selected.

* { } Braces are used to group items into a single syntactic element. They are
most often used to enclose lists and to enclose elements that are followed by
an ellipsis.

In addition, the case of letters in the command mnemonics is significant. Mnemonics that
are longer than four characters can have a short form or a long form. The analyzer accepts
either form. Upper-case letters show the short form of a command mnemonie. For more
information, see “Command Abbreviation” in Chapter 3,

Common Definitions
Syntax and returned format descriptions have the following definitions in common:
* <LF> is the line feed character (ASCII decimal 10).

* <" END> is assertion of the HP-IB END message while the last byte of data is
on the bus.

* <sp> is the space character (ASCII decimal 32).

72

Command Reference

Common Commands

This section describes all of the IEEE 488.2 common commands that are implemented in
the HP 35660A. An important property of all common commands is that you can send
them without regard to a program message’s position in the command tree. For more
information on the analyzer’s command tree, see Chapter 3, “Programming with
Hierarchical Commands.”

*CAL? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: oureur 711;"*carz"

Query Syntax: *CAL?
Returned Format: {0]1}<LF><"END>
Description:

This query causes the analyzer to recalibrate. If the calibration is completed witheut error,
the analyzer returns 0. If the calibration is not completed without error, the analyzer
returns 1.

7-3

Command Reference

*CLS command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpur 711;**crs"
Command Syntax: *CLS

Description:

This command clears the Status Byte register. It does so by clearing (resetting to 0) all bits
in the following event registers:

» Data Integrity event register

Device Status event register

*

User Status event register

Event Status register

In addition, *CLS clears the error queue and cancels any preceding *OPC command or query.
This ensures that bit 0 of the Event Status register will not be set and that no response will
be placed in the analyzer’s output queue when pending overlapped commands are completed.

*CLS does not change the current state of enable registers or transition registers.

NOTE *CLS should be sent immediately following a Program Message Terminator. This
guarantees that the Status Byte's Message Available (MAV) and Master Summary
Status bits will be cleared.

See Chapter 5 for more information on the Status Byte register.

7-4

Command Reference

*ESE[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: dependent on setting of *PSC

Example Statements: ourpur 711;"*ESE 1"
OUTPUT 711;"*ESE?"
Command Syntax: *ESE<sp> <value>

<value>:=any integer x, where 0 < x < 255 (NRf format)

Query Syntax: *ESE?

Returned Format: <value><LF>< ~END>

<value>:=an integer (NR1 format)

Description:

This command allows you to set bits in the Event Status enable register. Assign a decimal
weight to each bit you want set according to the formula:

9 (bit_number}

with acceptable values for bit_number being 0 through 7. Then add the weights of all set
bits and send the sum with this command.

When an enable register bit is set to 1, the corresponding bit of the Event Status register is
enabled. The enabled bit will be included in the Event Status summary.

The Event Status summary is reported to bit 5 of the Status Byte register. Bit 5 is only set if
both of the following are true:

* One or more bits in the Event Status register are set

* At least one of the set bits is enabled by a corresponding bit in the Event Status
enable register

The option last specified with *ESE is saved in nonvolatile memory when you send the
SYST:SAVE command. It can be recalled at power-up, depending on the setting of *PSC.
When the setting of *PSC is 0 at power-up, all bits in the Event Status enable register are set
according to the saved *ESE value. When the setting of *PSC is 1 at power-up, all bits in the
Event Status enable register are initialized to 0. The current setting of bits is not modified
when you send the *RST command.

The query returns the current state of the Event Status enable register. The state is
returned as a sum of the decimal weights of all set bits.

For more information on the Event Status register set, see Chapter 5.

7-5

Command Reference

*ESR? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 128

Example Statement: ourpur 711;"*ESR?"
Query Syntax: *ESR?

Returned Format: <value><LF>< ~END>

<value>::=any integer x, where 0 < x = 255 (NR1 format)

Description:

This query returns the current state of the Event Status register. The state is returned asa
sum of the decimal weights of all set bits. The decimal weight for each bit is assigned
according to the formula:

z{bit_number)
with acceptable values for bit_number being 0 through 7.
The register is cleared after being read by this query.

A bit in the Event Status register is set to 1 when the condition that bit monitors becomes
true. A set bit remains set, regardless of further changes in the condition it monitors, until
the Event Status register is:

* Read by this query or
+ Cleared by the *CLS command.

For more information on the Event Status register set, see Chapter 5.

7-6

Command Reference

*IDN? _query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: instrument dependent

Example Statement: ourpur 711;"*IDN?"
Query Syntax: *IDN?

Returned Format: HEWLETT-PACKARD,35660A, <serial num:>>,
<revigion_num><LF><"~END>

<serial_num>::=10 ASCII characters

<revision_num>::=7 ASCII characters

Description:
The response to this query uniquely identifies your analyzer.

7.7

Command Reference

*OPC[?] command/query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourrur 711;"*o0PC"
CUTPUT 711;"*0PC?"

Command Syntax: *OPC
Query Syntax: *QPC?
Returned Format: 1<LF><"~END>

Description:

Use *OPC or *OPC? if you want to know when all pending overlapped commands have
been completed.

Most commands that you send to the analyzer are processed sequentially. A sequential
command will hold off the processing of any subsequent commands until it has been
completely processed. However, some commands will not hold off the processing of
subsequent commands; they are referred to as overlapped commands.

The analyzer uses an operation complete (OPC) flag to keep track of overlapped commands
that are still pending (that is, not completed). The OPC flag is reset to 0 when an overlapped
command is pending. It is set to 1 when no overlapped commands are pending. You ean not
read the OPC flag directly, but you can use *OPC and *OPC? to tell when the flag is set to 1.

If'you use *OPC, bit 0 of the Event Status register is set to 1 when the OPC flag is set to 1.
This allows the analyzer to generate a service request when all pending overlapped
commands are completed (assuming you have enabled bit 0 of the Event Status register and
bit 5 of the Status Byte register).

If you use *OPC?, 1 is placed in the output queue when the OPC flag is set to 1. This allows
you to effectively pause the controller until all pending overlapped commands are completed.
It must wait until the response is placed in the queue before it can continue.

NOTE The *CLS and *RST commands cancel any preceding *OPC command or query.
Pending overlapped commands are still completed, but you can no longer
determine when. Two HP-1B bus management commands Device Clear (DCL) and
selected Device Class (SDC) will also cancel any preceding *OPC command
or query.

7-8

Command Reference

*OPT? query

Overlapped: no

Delayed Result: no

Pass Control Required: no

Power-up state: instrument dependent

Example statement: ourpur 711; “*oPT?"
Query Syntax: *OPT?

Return Format: {0 <option>[<option>1} <LF>< "~ END>

<option>;:= aseries of ASCII characters describing an instrument option
{never more than 255 characters).

Description:

This query allows the analyzer to report any options it contains. For example, if your
analyzer contains an internal disc drive, it returns DISC in response to this query.

The analyzer returns 0 if it contains no special options.

Command Reference

*PCB command

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statement: ourpur 711;"*pcB 21"

Command Syntax: *PCB<sp><value>[,<value>]

value::=an integer (NRf format)

Description:

Use this command to specify the address of a controller that is temporarily passing control of
the HP-IB to the analyzer. When the analyzer completes the operation that required it to
have control of the bus, it automatically passes control back to the controller at this address.

The optional second <value> is only used for controllers that have extended addressing.
It is interpreted as the secondary address of the controller.

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the specified controller address does not change.

7-10

Command Reference

*PSC[?] command/query

QOverlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ouvrpur 711;"*PSc 1"
OUTPUT 711;"*PSC?"

Command Syntax: *PSC<sp>{0|1}

Query Syntax: *PSC?
Returned Format: {0|1}<LF><"~END>
Description:

This command allows you to specify whether or not the Service Request enable register and
the Event Status enable register should be cleared (all bits reset to 0) at power-up.

The settings of the Service Request enable register and the Event Status enable register are
saved in nonvolatile memory when the analyzer is turned off. These settings can be recalled
when you turn the analyzer on, but only if the Power-on Status Clear (PSC) flag is reset to O.
When the PSC flag is set to 1, the two enable registers are cleared at power-up. Use *PS3C to
specify the setting of the PSC flag.

The option last specified with *PSC is saved in nonvolatile memory when you send the
SYST:SAVE command. This means that when you turn the analyzer off and then back on,
the state of *PSC does not change.

If you want the analyzer to generate a service request at power-up, bit 7 of the Event Status
register and bit 5 of the Status Byte register must be enabled. This is only possible if the
PSC flagis set to 0.

The query returns the current setting of the PSC flag.

7-11

Command Reference

*RST

command

Example Statement: ovrpur 711;*#*rsT"
Command Syntax: *RST

Description:

This command returns the analyzer to its power-up state.
or *OPC? and clears all event registers.

The following are not affected by this command:

» All states saved in nonvolatile memory

* The state of all enable and transition registers
» The state of INP:UNIT:EU:MULT

e The state of INP:UNIT:EU:NAME

* The state of CAL:AUTO

* The state of SYST:BEEP

* Calibration constants

* Math functions and constants

* The input buffer and output queue

+ Limit and data table entries

Overlapped: yes

Delayed result: no

Pass control required: no
Power-up state: not applicable

In addition, it cancels any *OPC

For a list of the states saved in nonvolatile memory, see the SYST:SAVE command.

712

Command Reference

*SRE[?] command/query

Overfapped: no

Delayed result: no

Pass control required: no

Power-up state: dependent on satting of *PSC

Example Statement: ourpur 711;"+sre 160"
OUTPUT 711;"*3RRE?"

Command Syntax: *SRE<sp><value>

<value>:=any integer x, where § < x < 255 (NRf format)

Query Syntax: *SRE?

Returned Format: <value»<LF>< "~ END>

<value>:=an integer (NR1 format)

Description:

This command allows you to set bits in the Service Request enable register. Assign a decimal
weight to each bit you want set according to the formula:

2(bit*number)

with acceptable values for bit_number being 0 through 7. Then add the weights of all set
bits and send the sum with this command.

NOTE The analyzer ignores the setting you specify for bit 6 of the Service Request enable
register. This is because the corresponding bit of the Status Byte register is
always enabled.

The analyzer requests service from the active controller when one of the following oceurs:

* A Dit in the Status Byte register changes from 0 to 1 while the corresponding bit
of the Service Request enable register is set to 1.

* A bit in the Service Request enable register changes from 0 to 1 while the
corresponding bit of the Status Byte register is set to 1.

The option Iast specified with *SRE is saved in nonvolatile memory when you send the
SYST:SAVE command. It can be recalled at power-up, depending on the setting of *PSC.
When the setting of *PSC is 0 at power-up, all bits in the Service Request enable register are
set according to the saved *SRE value. When the setting of *PSC is 1 at power-up, all bits in
the Service Request enable register are initialized to 0. The current setting of bits is not
modified when you send the *RST command.

The query returns the current state of the Service Request enable register. The state is
returned as a sum of the decimal weights of all set bits.

Command Reference

*STB?

query

Overlapped: no
Delayed result: ne

Pass control required: no
Power-up state; variable

Example Statement: ovrpur 711;"*sTB?"

Query Syntax: *3TR?

Returned Format: <value><IF><~END>

< value>::=any integer x, where 0 < x < 255 (NR1 format)

Description:

This query returns the current state of the Status Byte register. The state is returned as a
sum of the decimal weights of all set bits. The decimal weight for each bit is assigned
according to the formula:

2(bit_number)

with acceptable values for bit number being 0 through 7.

The setting of bits is not affected by this query. To reset the bits in the Status Byte register,
vou must use the *CLS command.

Bits in the Status Byte register are defined as follows:

[4

Bit 0 summarizes all enabled bits of the User Status event register.
Bits 1, 2, and 3 are reserved.

Bit 4 is the Message Available (MAV) bit. It is set whenever there is something
in the analyzer’s output queue.

Bit 5 summarizes all enabled bits of the Event Status register.

Bit 6, when read with this query (*STB?), acts as the Master Summary Status
(MSS) bit. It summarizes all enabled bits of the Status Byte register. (Bit 6 acts
as the Request Service (RQS) bit when it is read by a serial poll.)

Bit 7 summarizes all enabled bits of the Device Status event register.

For more information on the Status Byte register, see Chapter 5.

Command Reference

*TRG command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpur 711;"*TRG"
Command Syntax: *TRG

Description:
This command triggers the analyzer if the following two things are true:

» The trigger source must be the HP-IB (TRIG:SOUR BUS)

* The analyzer must be ready to trigger. (Bit 2 of the Device Status condition
register must be set.)

The *TRG command has the same effect as TRIG:IMM. It also has the same effect as the
HP-1B bus management command Group Execute Trigger (GET).

*TST? query

Overlapped: no

Defayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourrur 711;"*TsT?"
Query Syntax: *TST?
Returned Format: {0|1}<LF><"~END>

Description:
This query invokes a self-test that verifies proper operation of the analyzer’s hardware.
When you send the query, the analyzer self-calibrates and then compares the calibration

results to specified limits. If the results are within the specified limits, the analyzer
returns 0. If the results exceed the specified limits, the analyzer returns 1.

Command Reference

*WAI command

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpuT 711;"*wAI"
Command Syntax: *WAI

Description:

Use *WAI to hold off the processing of subsequent commands until all pending overlapped
commands have been completed.

Most commands that you send to the analyzer are processed sequentially. A sequential
command will hold off the processing of any subsequent commands until it has been
completely processed. However, some commands will not hold off the processing of
subsequent commands; they are referred to as overlapped commands. *WAI ensures that
overlapped commands will be completely processed before subsequent commands (those sent
after *WAI) are processed.

7-16

Arm—
Display

Command Reference

Device-Specific Commands

ARM subsystem

Description:

This subsystem contains commands and queries related to the analyzer’s trigger arming
functions. See the TRIG subsystem for commands related to other triggering functions.

ARM[:IMMediate] command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"arm”
OUTPUT 711;"Arm:Immediate"

Command Syntax: ARM[:IMMediate]
Description:
This command enables triggering when the following two things are true:

¢ Manual arming is selected.

* Bit 3 of the Device Status condition register (ready-for-arm) is set to 1.

After sending the command, triggering occurs when the appropriate trigger signal is
received. The command is ignored when automatic arming is selected.

See ARM:SOUR for more information on arming modes and TRIG:SOUR for information on
selecting the trigger signal.

717

Command Reference

ARM:SOURce|[?] command/query

Overlapped: no
Delayed result; no

Pass control required: no
Power-up state: FREE

Example Statements: ouTpuT 711;"ARM:SOUR FREE"
OUTPUT 711;"ARM:SOURCE HOLD"
ouTPUT 711;"Arm:Sour?"”

Command Syntax: ARM:SOURce<sp> {FREErun |HOLD}

Query Syntax: ARM:SOURce?
Returned Format: {FREE{HOLD}<LF>< ~END>
Description:

This command allows you to select one of two modes for arming the trigger. The modes are:

« Automatic arming (ARM:SOUR FREE)
* Manual arming (ARM:SOUR HOLD)

In order for the analyzer to make a measurement, its trigger must be armed before a trigger
signal is received. For non-averaged measurements, the trigger must be armed before each
measurement. IFor averaged measurements, the trigger must be armed before each new
time record.

When you start a measurement with automatic arming selected, the analyzer waits for the
digital filters to settle and then triggers as soon as a trigger signal is received. When the
measurement or average is completed, the trigger is automatically re-armed.

When you start a measurement with manual arming selected, the analyzer waits for the
digital filters to settle and then waits for you to send the ARM:IMM command. Once both of
these conditions are met, the analyzer triggers as soon as a trigger signal is received. When
the measurement or average is completed, you must once again send the ARM:IMM
command to re-arm the trigger.

The query returns an ASCII string that indicates whether FREErun or HOLD is selected.

See TRIG:SOUR for information on selecting the trigger signal.

7-18

Command Reference

AVERage subsystem

Description:
This subsystem contains commands related to the analyzer’s data averaging functions.

AVER:COUNt[?] command/query

Overlapped: no
Delayed result: yes

Pass controf required: no
Power-up state: 10

Example Statements: ourpur 711;"AVER:COUN 5"
QUTPUT 711;:;"Average:Count 100"
OUTPUT 711:"AVER:COON?”

Command Syntax: AVERage:COUNt<sp> <value>
<value>:=a single integer from 1 to 99999 (NRf format)

Query Syntax: AVERage:COUN{?

Returned Format: <value> <LF>< ~END>

<value>:=a single integer (NR1 format)

Description:

The value sent with this command is used in different ways, depending on the kind of
average weighting you have specified. When stable weighting is specified (AVER:WEIG
STAB), the value you send with this command determines the number of averages required
to complete a measurement. When exponential weighting is specified (AVER:WEIG EXP),
the value you send with this command determines two things:

* The number of averages required to complete the first phase of an exponentially
averaged measurement

* The weighting factors for new and old data during the second phase of an
exponentially averaged measurement

If peak averaging is selected (AVER:TYPE PEAK), or if averaging is turned off (AVER:STAT
OFF), the value sent with this command does not affect the measurement.

The value sent with this command affects the setting of the measuring bit in the Device
Status condition register. For more information, see Chapter 5, “Using the HP 35660A’s
Status Registers.”

The query returns a value indicating the current number of averages selected.

7-19

Command Reference

AVER:DISPlay selector

Description:

This command only selects the AVER:DISP subsystem. Sending AVER:DISP alone
does nothing.

AVER:DISP:RATE|[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 5

Example Statements: ourpur 711;"aver:disp:rate 10"
OUTPUT 711;"AVERAGE:DISPLAY:RATE 5"
OUTPUT 711;"AVER:DISP:RATE?"

Command Syntax: AVERage:DISPlay:RATE<sp> <value>
<value>::=a single integer from 1 to 99999 (NRf format)

Query Syntax: AVERage:DISPlay:RATE?

Returned Format: <value><LF>«<"~END>
<value>:=a single integer (NR1 format}

Description:

When fast averaging is turned on (AVER:DISP:RATE:STAT ON) you can specify an interval
for display updates. This is the command you use to specify that interval. For example, if
you send AVER:DISP:RATE 5, the display is updated once every 5 averages.

The value specified with this command is not used if fast averaging is turned off
(AVER:DISP:RATE:STAT OFF).

The query returns a value that indicates the current display update rate.

7-20

Command Reference

AVER:DISP:RATE:STATe[?] command/query

Overtapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"AVER:DISP:RATE:STAT 1"
OUTPUT 711;"Average:Display:Rate:State Off"
OUTPUT 711;"aver:disp:rate:stat?”

Command Syntax: AVERage:DISPlay: RATE:STATe<sp>{OFF|ON| 0|1}

Query Syntax: AVERage:DISPlay:RATE:STATe?
Returned Format: {0|1}<LF><"END>
Description:

Use this command to turn fast averaging off and on. When fast averaging is off, the display
is updated each time one average is taken.

When fast averaging is on, the display is updated each time a specified number of averages is
taken, The number can be from 1 to 99,999 and is specified with the AVER:DISP:RATE
command. For example, if fast averaging is on (AVER:DISP:RATE:STAT ON), and the value
of AVER:DISP:RATE is 5, the display is updated every 5 averages. If the number specified in
AVER:DISP:RATE is larger than the number of averages required to complete your
measurement, the display is only updated when the measurement is paused or completed.

The query returns O if fast averaging is off, 1 if it is on.

AVER:INITialize command

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"Aver:Init”
OUTPUT 711;"AVERAGE:YNITIALIZE"

Command Syntax: AVERage:INITialize

Description:

This command sets a flag so that the next INIT:STAT RUN command will start a new
running average. For example, if a measurement is paused and you send AVER:INIT
followed by INIT:STAT RUN, a new running average is started after the old one is discarded.
However, if a measurement is paused and you only send INIT:STAT RUN, the paused
measurement continues from where it was stopped and new data is averaged in with the old
running average.

7-21

Command Reference

AVER:OVERIlap[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ocurpuT 711;"AVER:OVER .1"
OUTPUT 711;"average:overlap 90PCT"
OUTEUT 711;“AVERAGE:OVERLAP?"

Command Syntax: AVERage:OVERlap<sp>{{ <percent>PCT} | <fraction>}

<percent>:=an integer from 0 to 99 (NRf format)
<fraction>::=a decimal number from .00 to .99 in increments of .01 (NRf format)

Query Syntax: AVERage:OVERlap?

Returned Format: <fraction><LF>< ~END>

<fraction>::=a decimal number (NR2 format)

Description:

Under certain conditions, data points from the end of one time record can be reused at the
beginning of the next time record. This results in the overlapping of time records. Use the
AVER:OVER command to specify the maximum amount of time record overlap you want
to allow.

Overlapping becomes possible when the instrument takes more time to collect time records
than it does to process them. This occurs at narrower frequency spans. At spans narrow
enough to allow the requested amount of overlapping, time records will be overlapped.

You can specify overlap either as a percentage or as a fraction of the time record length.
AVER:OVER 22PCT is the same as AVER:OVER 0.22. In either case, the value you send is
rounded to the nearest allowable percentage (an integer between 0 an 99). You can step the
current overlap setting up or down 1% by sending AVER:OVER UP or AVER:OVER DOWN.

The query returns a value that indicates the amount of overlap currently specified. The
value is returned in fractional form.

7-22

Command Reference

AVER[:STATe][?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourrur 711;"AVER OFF"
OUTPUT 711; "AVERAGE:STATE 1"
OUTPUT 711;"Aver?"

Command Syntax: AVERage[:STATe]<sp>{OFF|ON|0| 1}

Query Syntax: AVERage[:STATe]?
Returned Format: {0|1}<LF><"END>
Description:

Use this command to turn averaging off and on.
The query returns 0 if averaging is off, 1 if averaging is on.
See the following for more information:

* AVER:TYPE - for selecting an averaging type.
* AVER:WEIG - for specifying how averaged data should be weighted.
* AVER:COUN - for specifying the number of averages

7-23

Command Reference

AVER:TYPE[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state; RMS

Example Statements: ouTpuT 711;“AVER:TYPE RMS"
OUTPUT 711;"Average:Type Peak"
QUTPUT 711;"Aver:Type?”

Command Syntax: AVERage:TYPE<sp> {PEAK|RMS|VECTor}

Query Syntax: AVERage:TYPE?
Returned Format: {PEAK|BMS|VECT}<LF><~END>
Description:

This is one of two commands that affect the way running averages of measurement data are
calculated. The other command is AVER:WEIG.

You can specify one of three options with this command:
* Rms — root mean square averaging of the last n power spectra or linear averaging
of the last n cross spectra
* Vector - vector averaging of the last n linear spectra
* Peak hold - point by point maximum of the last n power spectra, not available

for cross spectra

With rms averaging selected (AVER:TYPE RMS), you get a good approximation all input
signal components, including noise. Each frequency bin is averaged separately.

With vector averaging (AVER:TYPE VECT) and an appropriate trigger source selected, noise
components tend to cancel. This allows you to resolve smaller periodic signals. Each
frequency bin is averaged separately.

With peak hold selected (AVER:TYPE PEAK), the pesk value for each frequency bin is
retained each time a new power spectrum is acquired. The value of AVER:COUN is not used
to stop the acquisition of new spectra, so they are acquired continuously until the
measurement is paused.

When stable weighting is selected, rms and vector averaging stop when the specified number
of averages is acquired. When exponential weighting is selected, rms and vector averaging
continue indefinitely until the measurement is paused.

The query response indicates which type of averaging is currently selected.

7-24

Command Reference

AVER:WEIGhting[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: STAB

Example Statements: ourrur 711;"aver:weig stab"
OUTPUT 711;"Average:Weighting Exponential™
OUTFUT 711; "AVER:WEIG?"

Command Syntax: AVERage:WEIGhting<sp> {EXPonential | STABle}

Query Syntax: AVERage:WEIGhting?
Returned Format: {EXP|STAB}<LF>< "~ END>
Description:

This command allows you to specify how averaged data will be weighted. The options are:

* Stable (or uniform) weighting (AVER:WEIG STAB)
* Exponential weighting (AVER:WEIG EXP)

With stable averaging selected, each spectrum included in the running average is weighted
equally. Also, the measurement stops when the specified number of averages has
been acquired.

With exponential averaging selected, there are two distinct phases to the averaging process.
During the first phase, each spectrum included in the running average is weighted equally, as
In stable averaging. During the second phase, new and old data are weighted as follows:

[(1/N) xnew]+[((N—1)/N) xold]

Where: N is the value of AVER:COUN (number of averages)
new is the most recently acquired spectrum
old is the data in the running average

The first phase of an exponentially averaged measurement continues until the running
average includes the number of spectra specified in AVER:COUN (number of averages).
The second phase continues indefinitely until the measurement is paused.

The setting of AVER:WEIG is not used if peak hold averaging (AVER:TYPE PEAK)
is selected.

The query returns a mnemonic that indicates the type of weighting selected: EXP for
exponential or STAB for stable weighting.

7-25

Command Reference

7-26

Command Reference

CALibration _ subsystem

Description:
This subsystem contains commands related to calibration of the analyzer.

CAL[:ALL]? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpur 711;"cane”
Query Syntax: CALibration[:ALL]?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

The instrument performs a full calibration when you send this query. The query response is
a 0 if the calibration is suceessful. The response is a non-zero integer if the calibration fails,
with the integer being an error number.

The calibration routine performed when you send this query is the same as the calibration
routine performed when you send the CAL:SING command.

7-27

Command Reference

CAL:AUTO[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"caL:AUTO OFF"
OUTPUT 711;"calibration:auto 1"
OUTPUT 711;:;"Cal:Auto?”

Command Syntax: CALibration:AUTO<sp>{OFF|ON|0| 1}

Query Syntax: CALibration:AUTQ?
Returned Format: {0i11}<LF><"~END>
Description:

Use this command to enable and disable the analyzer’s autocalibration routine. The routine
causes the analyzer to calibrate automatically at power-up, several times during the first
hour of operation, and once each hour after that.

NOTE The autccalibration routine does not interrupt an averaged measurement
in progress.

When you turn autocalibration off (CAL:AUTO OFF), the analyzer is only recalibrated when
you send the CAL:SING command or the CAL:ALL query. Calibration always occurs
automatically at power-up.

The query returns 0 if autocalibration is disabled, 1 if it is enabled.

7-28

Command Reference

CAL:CLEar command

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: not applicable

Example Statements: ourrur 711;"cal:cle”
OUTPUT 711;"CALIBRATION:CLEAR"™

Command Syntax: CALibration:CLEar

Description:

This command clears all calibration constants until the next calibration occurs. While the
calibration constants are cleared, data from the current measurement is uncalibrated.

If autocalibration is enabled (CAL:AUTO ON), the calibration constants can remain cleared

for as long as one hour. If autocalibration is disabled, the constants remain cleared until you
send CAL:ALL? or CAL:SING.

Bit 2 of the Data Integrity Condition register indicates whether or not the calibration
constants are currently cleared.

CAL:SINGle command

Cverlapped: yes

Delayed result: no

Pass control required: no
Power-up state; not applicable

Example Statements: ourpur 711;"can:sing”
OUTPUT 711;"cCalibration:Single"

Command Syntax: CALibration:SINGle

Description:

This command causes the analyzer to recalibrate immediately. The calibration occurs
whether the autocalibration routine is enabled or disabled (CAL:AUTO ON or OFF). The
analyzer’s measurement activities are suspended during the calibration.

7-29

Command Reference

CAL:TRACe[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpuT 711;"CAL:TRAC 1"
ouUTPUT 711;"Calibration:trace OFF"
OUTPUT 711; "CAL:TRAC?"

Command Syntax: CALibration:TRACe<sp>{0OFF|ON|0]1}

Query Syntax: CALibration:TRACe?
Returned Format: {0}1}<LF><"END>
Description:

This command allows you to display the calibration constants that will be used for a
particular measurement setup. To display the constant for a setup, you must do all of
the following:

1. Specify the measurement setup
2. send CAL:TRAC ON
3. send INIT:STAT STAR

The query returns 0 if the calibration constants are not being displayed, 1 if they are.

7-30

Command Reference

CONFigure subsystem

Description:

The single command in this subsystem is used to switch the analyzer between its
one-channel and two-channel operating modes.

7-31

Command Reference

CONF:TYPE[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: SPEC

Example Statements: ourpur 711;"conf:type spec”

QUTPUT 711; "CONFIGURE:TYPE NETWORK"
OUTPUT 711;"Conf:Type?”

Command Syntax: CONFigure: TYPE<gp> {NETWork | SPECtrum}

Query Syntax: CONFigure:TYPE?
Returned Format: {NETW|SPEC}<LF>< ~END>
Description:

Use this command to select the analyzer’s one-channel or two-channel operating mode.

The one-channel mode is selected with CONF:TYPE SPEC. In this mode, channel 1 can
analyze signal components up to 102.4 kHz. Channel 2 is not used at all. The following data
can be displayed in this mode:

Channel 1 time (TRAC:RES TIME1)

Channel 1 spectrum, linear or power (TRAC:RES SPEC1)
Channel 1 power spectral density (TRAC:RES PSD1)
Functions 1-5 (TRAC:RES F1.-5)

Constants 1-5 (TRAC:RES K1-5)

Recalled traces (MMEM:LOAD:TRAC <file_spec>)

The two-channel mode is selected with CONF:TYPE NETW. In this mode, channels 1 and 2
can both analyze signal components up to 51.2 kHz. When this mode is selected, all data
available in the one-channel mode and the following additional data can be displayed:

Channel 2 time (TRAC:RES TIME2)

Channel 2 spectrum, linear or power (TRAC:RES SPEC2)
Channel 2 power spectral density (TRAC:RES PSD2)
Frequency response (TRAC:RES FRES)

Coherence (TRAC:RES COH)

Cross spectrum (TRAC:RES CSP)

The query returns SPEC if the one-channel mode is selected, NETW if the two-channel mode
is selected.

7-32

Command Reference

DISPlay subsystem

Description:

This subsystem has three main purposes:
» It provides commands for setting x-axis and y-axis scaling on the two displays.
¢ It provides access to the limit table data and many of the limit table functions.

* It provides access to the displayed data (data that has already been transformed
into the current display coordinates). See the TRAC subsystem for access to the
raw data from which the displayed data is derived.

The following diagram shows you the difference between data available in the TRAC
subsystem and the DISP subsystem:

e e |

{ Measuremeni [T p Hath) Coordinate) Display
: — Operations [— Transformation ————, |
B (Logarithmic *7’|_T '''''''''' -
! Magnitude, | |
3 Phose.etc J\}
TRACGDATA DISP:DATA
complex or real always real

Figure 7-2. Flow of Measurement Data

After measurement data is collected, any specified math operations are performed. Data is
then transformed into the specified coordinate system and sent to the display,. TRAC:DATA
provides access to the raw measurement data after math operations have been performed.
This data can be either complex or real. DISP:DATA provides access to the displayed data,
after the coordinate transformation. This data is always real.

NOTE Both TRAC:DATA and DISP:DATA aflow you to take measurement data out of the
analyzer. However, only TRAC:DATA allows you to put measurement data back
into the analyzer.

With a few exceptions, display commands must be directed to one of the two displays: A or B.
To specify a display, insert one of the following items between DISPLAY or DISP and the rest
of the command:

* :A-asin DISP:A:GRAT ON
* :B-asin DISPLAY:B:LIM:BEEP?
¢ 1-asin DISPLAY1:X:SPACING LIN
* 2 -asin DISP2:Y:SCAL:STAR?
Using :A or 1 directs the command to display A. Using :B or 2 directs the command to

display B. If you don’t explicitly specify one of the displays, the command is directed to
display A.

NOTE The display to which you direct a command becomes the active display.

7-33

Command Reference

When HP Instrument BASIC is installed in the analyzer, additional commands are added
to this subsystem. For information on these commands, see Appendix D in the
HP Instrument BASIC Programming Reference.

DISP:DATA? query

Overlapped:; no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Exampie Statement: ourpur 711;"DISP:DATA?"

Query Syntax: DISPlay[<spec>1:DATA?
<spec>u=":A7 1:B|1|2

Returned Format: <block data>

<block_data> takes one of two forms, depending on whether the data is ASClI-encoded or
binary-encoded. When data is ASCII-encoded (DISP:HEAD:AFOR ASC):

<block_data>:={<point>}..<point n><LF><"~END>

< point>::=the y-axis values for the 1st through nth x-axis points (n is returned with the
DISP-HEAD:POIN? query)

All y-axis values are returned in NRf format.

When data is binary-encoded (DISP:HEAD:AFOR FP32 or DISP:HEAD:AFOR FP64):
<block_data>:=#<byte><length bytes>{<point>}...
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASClI-encoded bytes that specify the number of data bytes to follow

<point>::=the y-axis values for the 1st through nth x-axis points (n is returned with
DISP:HEAD:POIN?)

If DISP:HEAD:AFOR FP32 is specified, y-axis values are encoded as 32-bit binary floating
peint numbers. If DISP:HEAD:AFOR FP64 is specified, y-axis values are encoded as 64-bit
binary floating point numbers.

Description:

This query dumps data from the specified display to the analyzer’s output queue. Your
controller can then read the data from the queue. The data returned by this query has
already undergone a coordinate transform, so the y-axis values are in the current display
units (returned from DISP:HEAD:YUN?).

The x-axis value for a given point is implied by the order of the points. DISP:HEAD:XOR is
the x-axis value for the first point. Add DISP:HEAD:XINC to the first point’s x-axis value to
get the value of the second point. Add DISP:HEAD:XINC to the second point’s x-axis value
to get the value of the third point and so on.

7-34

Command Reference

DISP:GRATicule[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"Disp:Grat 0"
OUTPUT 711;"DISPLAY:B:GRATICULE ON"
OUTPUT 711;"DISP2:GRAT?"

Command Syntax: DISPlay[<spec>]:GRATicule<sp>{OFF|ON|0[1}
<spec>n=":A" [:B|1|2

Query Syntax: DISPlay[<spec>]:GRATicule?
Returned Format: {011} <LF>< "~ END>

Description:

Each display’s graticule lines (or trace grid) can be turned on and off with this command.
When a grid is turned off (DISP:GRAT OFF), it is not displayed, plotted, or printed.

The query returns 0 if the specified display’s graticule is off, 1 if it is on.

DiISP:HEADer selector

Description:

This command only selects the DISP:HEAD subsystem. Queries in this subsystem are used
to determine characteristics of the data returned by the DISP:DATA query. Sending
DISP:HEAD alone does nothing.

7-35

Command Reference

DISP:HEAD:AFORmat{?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ourpuT 711;"DISP:B:HEAD:AFOR FP64"
OUTPUT 711;*DISPLAY:HEADER:AFORMAT ASCII"
OUTPUT 711;"Disp:Head:Afor?"

Command Syntax: DISPlay[<spec>]:HEADer:AFORmat<sp>{ASCii | FP32|FP64}
<gpec>n="AT [:B[1]|2

Guery Syntax: DISPlay[<spec>].HEADer:AFORmat?
Returned Format: {ASC{FP32|FP64}<LF>< "~ END>
Description:

Display data can either be ASClI-encoded or binary-encoded when it is dumped to the
analyzer’s output queue using the DISP:DATA query. This command lets you specify how
the display data should be encoded.

NOTE Data encoding must be the same for both displays at any giventime. So
regardless of the display you specify when you send this command, encoding for
both will be changed.

When ASC is selected, data is sent as a series of y-axis values separated by commas. The
values are ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a series
of y-axis values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of y-axis values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-36

Command Reference

DISP:HEAD:NAME? query

Overlapped: no

Delayed result: no

Pass contral required: no

Power-up state: *Spectrum Chan 1°(display A)
*Time Chan 1" (display B)

Example Statement: ouTpPUT 711;"DISP1:HEAD:NAME?"

Query Syntax: DISPlay[<spec>]:HEADer:NAME?
<spec>u=":A7 |:Bf1|2

Returned Format: "<trace name>"<LF><~END>

<trace_name>::=0 to 30 printable ASCII characters

Description:

This query returns the name of the specified display. When looking at the analyzer’s screen,
you will see the name in the lower-left corner of the specified display.

You can change the name with the TRAC:TITL command.

DISP:HEAD:POINts? query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: 401 (display A)
1024 (display B)

Example Statement: ourpur 711;"DISP2:HEAD:POIN?"

Query Syntax: DISPlayf<spec>]:HEADer:POINts?
<spec>:="1A" |:B[1}2
Returned Format: <value><LF><~END>

<value>:=an integer (NR1 format)

Description:

A display’s x-axis is divided into discrete points. Use this query to determine how many
discrete points there are along the specified display’s x-axis. This is the number of points
that will be dumped to the analyzer’s output queue when you send the DISP:DATA query.

7-37

Command Reference

DISP:HEAD:PREamble?

query

Example Statement:

Query Syntax:

<sgpec>::

Returned Format:

<points>::

<x_per point>::
<x_origin>:
<X_increment>::
<y_per point>::
<y origin>:

<y_increment>

Cverlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

OUTPUT 711;"DISP:HEAD:PREZ?"

DISPlay[<spec>}:HEADer: PREamble?
=":A"L:B|1|2

<points>,<x_per_point>,<x_origin>,<x_increment>,
<y per_point> <y origin>,<y increment><LF><"~END>

=number of discrete points on the display’s x-axis (same as returned with
DISP:HEAD:POIN?)

=number of x-axis values per point {(same as returned with DISP:HEAD:XP0?)
=x-axis value of the first point (same as returned with DISP:HEAD:XOR?)

=increment between x-axis points {(same as returned with DISP:HEAD:XINC?)
=number of y-axis values per point (same as returned with DISP:-HEAD:YPO?)

=y-axis value of the lowest point on the specified trace (same as returned with
DISP:HEAD:YOR?)

i=optimum y-axis value per division (same as returned with
DISP:HEAD:YINC?)

<points>, <x_per_point>, and <y_per_point> are integers (NR1 format). All other values
are decimal numbers (NR2 or NR3 format).

Description:

This query returns seven pieces of information separated by commas. The information is

useful for setting up

an array to receive display data (returned from DISP:DATA?).

NOTE

As the Returned Format indicates, each piece of information can be returned

separately in response to its own query.

The <points>, <x_per_point>, and <y_per_point> values are used together to tell you how
many values you must read after sending the DISP:DATA query. The formula is:

of values to read = <points> x(<x_per_point+<y_per_point>)

7-38

Command Reference

The analyzer does not return x-axis values for each data point. Instead, it provides
<x_origin> and <x_increment> values so you can assign an x-axis value to each returned
point. <x origin> is the x-axis value for the first point. Add <x_increment> to the first
point’s x-axis value to get the value of the second point. Add <x_increment> to the second
point’s x-axis value to get the value of the third point and so on.

The values returned in <y _origin> and <y_increment> should be ignored when the value of
<y _points> is something other than 0 (zero).

DISP:HEAD:XINCrement? query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 256 (display A)
3.81E-6 (display B)

Example Statement: ourpuT 711;"DISP:A:HEAD:XINC?"

Query Syntax: DISPlay[<spec>]:HEADer:XINCrement?
<gpec>u=":A7|:B|1]|2

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:

This query returns the increment between x-axis values on the specified display. The value is
only valid when the DISP:HEAD:XPO? response is 0.

DISP:HEAD:XINC and DISP:HEAD:XOR are used together to assign x-axis values to the
points returned by the DISP:DATA query. DISP:HEAD:XOR is the x-axis value for the first
point. Add DISP:HEAD:XINC to the first point’s x-axis value to get the value of the second
point. Add DISP:HEAD:XINC to the second point’s x-axis value to get the value of the third
point and so on.

Use DISP:HEAD:XUN? to determine units for the DISP:HEAD:XINC value.

7-39

Command Reference

DISP:HEAD:XNAMe? query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: *Frequency” (display A)
"Time* (display B)

Example Statement: ourpur 711;*DISP1:BEAD:XNAM?"

Query Syntax: DISPlay[<spec>]:HEADer:XNAMe?
<spec>:=":A"|:B|1|2

Returned Format: "{Frequency| Time}"<LF>< ~END>

Description:

This query returns the name of the specified display’s x-axis. The name tells you whether
the displayed data is in the frequency or the time domain.

DISP:HEAD:XORigin? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpur 711;"DISP:B:HEAD:XOR?"

Query Syntax: DISPlayl <spec>]:HEADer:XORigin?
<spec>: = ":A~ |:B|1]|2
Returned Format: <value><LF><~END>

<value>:=a decimal number (NRf format)

Description:

This query returns the x value of the specified display’s first x-axis point. The value is only
valid when the DISP:HEAD:XPO? response is 0. The analyzer always returns 0 when
DISP:HEAD:XPO? is sent.

DISP:HEAD:XOR and DISP:HEAD:XINC are used together to assign x-axis values to the
points returned by DISP:DATA?. See DISP:HEAD:XINC for more information.

Use DISP:HEAD:XUN? to determine units for the DISP:HEAD:XOR value.

7-40

Comimand Reference

DISP:HEAD:XPOints? query

Overlapped: no
Delayed resuit: no

Pass control required: no
Power-up state: 0

Example Statement: ouTPuT 711;"DISP2:HEAD:XPO?"

Query Syntax: DISPlay[<spec>]:HEADer:XPQints?
<spec>:u=""A" [:B|1|2

Returned Format: 0<LF><"END>

Description:

The DISP:DATA query returns data from the specified display as a series of data points. The
DISP:HEAD:XPO query tells you how many x-axis values will be returned with each point.

Since each data point can only be made up of y-axis values, the DISP:HEAD:XPO query
always returns 0. You can calculate the x-axis values for each point using the values
returned by the DISP:HEAD:XINC and DISP:HEAD:XOR queries.

DISP:HEAD:XUNits? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: "HZ" (display A)
"S* (dispiay B)

Example Statement: oureur 711;"DpISP:A:HEAD:xXUNZ"

Query Syntax: DISPlay[<spec>]:HEADer:XUNits?
<sgpec>:u=":A™|:B}1{2

Returned Format: "{HZ|8}"<LF>< ~END>

Description:
This query tells you what units apply to the DISP:HEAD:XINC and DISP:HEAD:XOR values.

7-41

Command Reference

DISP:HEAD:YINCrement? query

Overlapped: no
Celayed result: no

Pass control required: no
Power-up state: variable

Example Statement: ourpur 711;“prspl:fEAD:YINC?”

Query Syntax: DISPlay[<spec>]:HEADer:YINCrement?
<spec>:=":A7 [:B[1|2

Returned Format: <value> <LF>< ~END>

<value>::=a decimal number (NRf format)

Description:

This query returns the optimum y-axis value per division for the specified trace. The value
returned is the result of the following calculation:

(Ymax — Ymin)/8
Where:

Ymax = the y-axis value of the highest point on the trace
Ymin = the y-axis value of the lowest point on the trace

The value is returned in the current y-axis units.

DISP:HEAD:YNAMe? query

Overlapped: no

Celayed result: no

Pass control required: no

Power-up state: "LogMag" (display A)
"Real" (display B)

Example Statement: ouTPuT 711;"DISP:B:HEAD:YNAM?"

Query Syntax; DISPlay[<spec>]:HEADer YNAMe?
<spec>:=":A7|:B[1]2

Returned Format: "{Delay[Imag}LinMag!LogMag|Phase|Real}"<LF>< ~END>

Description:

This query returns the name of the specified display’s y-axis. The name tells you what kind
of coordinates are being used to display the data. (Coordinates are referred to as Trace Type
on the analyzer’s front panel.)

7-42

Cormmand Reference

DISP:HEAD:YORigin? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statement: ouTeuT 711;"DISP2:HEAD:YOR?Z"

Query Syntax: DISPlayf<spec>1:HEADer:YORigin?
<spec»u= AT |:B|1{2

Returned Format: <value> <LF>«< ~END>

<value>::=a decimal number (NRf format)

Description:
This query returns the y-axis value of the lowest point on the specified trace.

DISP:HEAD:YPOints? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statement: ourpur 711;“prsr:nEap:veo2”

Query Syntax: DISPlay[<spec>]:HEADer:YPQints?
<spec>u=":A7[:B|1|2

Returned Format: 1<LF><~END>

Description:

The DISP:DATA query returns data from the specified display as a series of data points. The
DISP:HEAD:YPO query tells you how many y-axis values will be returned with each point.

The analyzer always returns 1 in response to this query. This means that each point
returned by DISP:DATA? will consist of one y-axis value.

7-43

Command Reference

DISP:HEAD:YUNits? query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "DBVYRMS" (display A)
"V (display B}

Example Statement: ouTrpuT 711;"DISP2:HEAD:YUN?"

Query Syntax: DISPlay[<spec>):HEADer:YUNits?
<spec>i=":A~:B|1|2

Returned Format: "[<unit>}'<LF><"~END>

<unit>::=V|V2|VRMS|VRMS2|DB|DBM|
DBVRMS | DBVPK | DEG |RAD | V/RTHZ |
VRMS/RTHZ | V2/HZ | VRMS2/HZ |
DBVRMS/HZ | DBVPK/HZ|DBM/HZ|S

Description:

This query tells you what unit applies to the y-axis values returned from the
DISP:DATA query.

NOTE Not listed in Returned Format are the many special units that can result from math
operations or the application of engineering units. However, such units are also
valid responses.

DISP:LIMit[?] command/query

Description:

Disp:LIM is functionally equivalent to Disp:LIM:TABL. See the latter command for
more details.

7-44

Command Reference

DISP:LIM:BEEPer[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"disp2:lim:beep off"
QUTPUT 711;"Display:A:Limit:Beeper On"
QUTPUT 711;"DISP:LIM:BEEP?"

Command Syntax: DISPlay[<spec>]:LIMit:BEEPer<sp>{OFF|ON 0|1}
<spec>u=":A7[:B}1|2

Query Syntax: DISPlay[<spec>]:LIMit:BEEPer?
Returned Format: {0]1}<LF><"~END>

Description:

This command enables and disables the limit-test beeper. When the beeper is enabled
(DISP:LIM:BEEP ON) and the limit test fails, the analyzer beeps.

The system beeper must also be enabled (SYST:BEEP ON) if you want the analyzer to beep.

The query returns 0 if the limit beeper is off, 1 if it is on.

DISP:LIM:FAIL? query

Description:

Disp:LIM:FAIL is functionally equivalent to Disp: LIM:FAIL:DATA. See the latter query for
more details.

7-45

Command Reference

DISP:LIM:FAIL[:DATA]? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpur 711;"DISP:B:LIM:FAIL?"

Query Syntax: DISPlayl <spec>]:LIMit:FAIL[:DATA]?
<gpec>i=":A" |:B|1|2

Returned Format: <block data>

<block _data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASCII-encoded (DISP:LIM:FATL:HEAD:AFOR ASC):

<block_data>::={<point>,}..<point n><LF>< ™~ END>
<point>:=<x_value> <y _value> <y limit>,<y_flag>

These values are returned for the 1st through nth points (n is returned with
DISP:LIM:FAI1:HEAD:POIN?)

All values are returned in the NRf format and are separated by commas.

When data is binary-encoded, (DISP:LIM:FAIL:HEAD:AFOR FP32 or
DISP:LIM:FAIL:HEAD:AFOR FP64):

<block data>::=#<byte><length bytes>{<point>}...
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<point>:=<x_value><y value><y_limit><y flag>

These values are returned for the lst through nth points (n is returned with
DISP:LIM:FAIL:HEAD:POIN?)

All values are returned as either 32-bit or 64-bit binary floating point
numbers, depending on the setting of DISP:LIM:FAIL:HEAD:AFOR.

Description:

When a limit table is coupled to a display that has limit testing enabled, the data in that
display is tested against limits specified in the table. Limits may be set for some or all of the
displayed data. This query responds with those points of the specified data that failed when
tested against the limits. Each point consists of four values, which are defined as follows:

<x_value>:=x-axis value of the failed point
<y value>::=y-axig value of the failed point
<y_limit>::=y limit specified for the failed point
<y_flag>::=fail flag (0=passed, 1=failed min. limit, 2=failed max. limit)

Limit tables are defined with the LIM:TABL:DATA command. They are assigned to a display
using the DISP:LIM:TABL command.

7-46

Command Reference

DISP:LIM:FAIL:HEADer selector

Description:

This command only selects the DISP:LIM:FAIL:HEAD subsystem. Sending
DISP:LIM:FAIL:HEAD alone does nothing.

DISP:LIM:FAIL:HEAD:AFORmat[?] command/query

Overlapped: no

Delayed resuit: no

Pass control required: no
Power-up state; ASC

Example Statements: ovurpur 711;"DISP:A:LIM:FAIL:HEAD:AFOR FP64"
OUTPUT 711;*DISPLAY:B:LIMIT:FAIL:HEADER:AFORMAT ASCII™
OUTPUT 711;"DISP:LIM:FAIL:HEAD:AFOR?"

Command Syntax: DISPlay[<spec>]:LIMit:FAIL:HEADer: AFORmat<sp> {ASCii |[FP32|FP64}
<gpec>:=":A~ |:B|1|2

Query Syntax: DISPlay[<spec>1:LIMit:FATL: HEADer: AFORmat?
Returned Format: {ASC|FP32|FP64} <LF>< " END:>

Description:

Data returned in response to the DISP:LIM:FAIL:DATA query can be ASCII-encoded or
binary-encoded. This command allows you to specify how each limit’s data should
be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-47

Command Reference

DISP:LIM:FAIL:HEAD:POINts? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ouTpPur 711;"DISP1:LIM:FAIL:HEAD:POIN?”

Query Syntax: DISPlay[<spec>]:LIMit:FAIL:HEADer:POINts?
<spec>u=":A" [:B]1|2

Returned Format: <value><LF><~END>

<value>:=an integer (NR1 format)

Description:

This query tells you how many points in the specified display failed when tested against a
limit table,

To define limit tables, use the LIM:TABL:DATA command. To assign limit tables to one of
the displays, use the DISP:LIM:TABL command. To read the values of the failed points, use
the DISP:L.IM:FAIL:DATA query.

DISP:LIM:LINE[?] command/query

Overlapped: no
Delayed resuft: no

Pass control required: no
Power-up state: 0

Example Statements: oureur 711;"Disp:Lim:Line on"
OUTPUT 711;"DISPLAY1:LIMIT:LINE 0"
OUTPUT 711;"DISP:LIM:LINE?"

Command Syntax: DISPlay{ <spec>]:LIMit: LINE<sp> {OFF|ON|0]1}
<spec>u="":A" |:B|1}|2

Query Syntax: DISPlay[<spec>]:LIMit:LINE?
Returned Format: {0|1}<LF><"~END>
Description:

This command enables the specified display to show limit lines. These limit lines define the
bounds within which you want the trace data to fall.

The query returns 0 if the specified display is not enabled to show limit lines, 1 if it is.

7-48

Command Reference

DISP:LIM:STATe[?] command/query

Overfapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ourpuT 711;"DISP:A:LIM:STAT OFF"
OUTPUT 711;"Display2:Limit:State 1"
OUTPUT 711;"disp:b:lim:stat?”

Command Syntax: DISPlay[<spec>]:LIMit:STATe<sp>{OFF|ON|0}1}
<spec>i=":A7[:B|1|2

Query Syntax: DISPlay[<spec>]:LIMit:STATe?
Returned Format: {0|1}<LF>«<"~END>

Description:
This command enables limit testing for the specified display. ON and 1 enable limit testing;
OFF and 0 disable limit testing.

While limit testing is enabled for a particular display, the data on that display is tested
against the limits each time the display is updated. When display A data fails the test, bit §
of the Data Integrity Condition register is set. When display B data fails the test, bit 9 of the
Data Integrity Condition register is set.

The query returns 0 if limit testing is not enabled for the specified display, 1 if it is.

7-49

Command Reference

DISP:LIM[:TABLe][?] command/query

Overlapped: no

Delayed resuit: no

Pass control required: no
Power-up state; 1 (display A}
2 {display B)

Example Statements: ourpur 711;"Disp2:Lim 1"
OUTPUT 711;"DISPLAY:A:LIMIT:TABLE 8"
OUTPUT 711;"DISP:LIM?"

Command Syntax: DISPlayl[<spec>]:LIMit[:TABLe]<sp> <table_number>

<gpec>:=":A" [:B|1]|2
<table number>::=a single integer 1 through 8 (NRf format)

Query Syntax: DISPlay[<spec>T1:LIMit[:TABLe]?

Returned Format: <value»<LF><~END>

<value>:=an integer (NR1 format)

Description:
This command allows you to couple one of the eight limit tables to the specified display.

If limit testing is enabled, the displayed data is automatically tested against the limit table
you specify with this command. The data is tested each time the display is updated.

The query response indicates which limit table is coupled to the specified trace.

DISP:LIM:TEST? query

Description:

Disp:LIM:TEST is functionally equivalent to Disp:LIM:TEST:DATA. See the latter query for
more details.

7-50

Command Reference

DISP:LIM:TEST[:DATA]? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpuT 711;"DISP:A:LIM:TEST?"

Query Syntax: DISPlayl<spec>1:LIMit: TEST[:DATA}?
<gpec>:u:=":A~[:B|1|2

Returned Format: <block_data>

<block_data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASClI-encoded (DISP:LIM:FAIL:HEAD:AFOR ASC):

<block_data>:={<point>}..<point n><LF><~END>
<point>:=<x_value>,<y_value> <y limit> <y flag>

These values are returned for the 1lst through nth points (n is returned with
DISP:LIM:FAIL:HEAD:POIN?)

All values are returned in the NRf format and are separated by commas.

When data is binary-encoded, (DISP:LIM:FAIL:HEAD:AFOR FP32 or
DISP:LIM:FAIL:HEAD:AFOR FP64):

<block_data>::=#<byte><length_bytes>{<point>}...
<byte> ::=one ASClI-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<point>:=<x_value><y value><y limit><y flag>

These values are returned for the 1st through nth points (nt is returned with
DISP:LIM:FATL:HEAD:POIN?)

All values are returned as either 32-bit or 64-bit binary floating point
numbers, depending on the setting of DISP.LIM:FAIL:HEAD:AFOR.,

Description:

When a limit table is coupled to a display that has limit testing enabled, the data in that
display is tested against limits specified in the table. Limits may be set for some or all of the
displayed data. This query responds with all points of the specified data that were tested
against limits, even if they did not fail those limits. Each point consists four values, which
are defined as follows:

<x_value>:=x-axis value of thié tested point
<y_value>::=y-axis value of the tested point
<y_limit>::=y limit specified for the tested point
<y_flag>::=fail flag (0=passed, 1=failed min, limit, 2=failed max. limit)

Limit tables are defined the LIM:TABL:DATA command. They are assigned to a display
using the DISP:LIM:TABL command.

7-51

Command Reference

DISP:LIM:TEST:HEADer selector

Description:

This command only selects the DISP:LIM:TEST:HEAD subsystem. Sending
DISP:LIM:TEST:HEAD alone does nothing.

DISP.LIM:TEST:HEAD:AFORmat[?] command/query

Overlapped: no
Delayed result: no

Fass control required: no
Power-up state: ASC

Example Statements: ourpur 711;"DISP1:LIM:TEST:HEAD:AFOR ASCii”
OUTPUT 711;"display:b:limit:test:header:aformat £p64"
OUTPUT 711;"DISP:LIM:TEST:HEAD:AFOR?"

Command Syntax: DISPlay[<spec>]:LIMit:TEST:HEADer : AFORmat <sp >
{ASCii|FP32|FP64}

<gpec>n=":A"|:B|1]2

Gluery Syntax: DISPlay[<spec>]:LIMit: TEST:HEADer: AFORmat?
Returned Format: {ASC|FP32{FP64} <LF><"~END>
Description:

Data returned in response to the DISP:LIM:TEST:DATA query can be ASCII-encoded or
binary-encoded. This command allows you to specify how each digplay’s data should
be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASClII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

Command Reference

DISP:LIM:TEST-HEAD:POINts? qguery

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpuT 711;"DISP:LIM:TEST:HEAD:POIN?"

Query Syntax: DISPlay[<spec>]:LIMit:TEST:HEADer:POINts?
<gpec>i=":A"[:B|1|2

Returned Format: <value><LF><~END>

<value>:=an integer (NR1I format)

Description:

This query tells you how many points in the specified display were tested against a
limit table.

To define limit tables, use the LIM:TABL:DATA command. To assign limit tables to one of
the displays, use the DISP:LIM:TABL command. To read the values of the tested points, use
the DISP;:LIM:FAIL:DATA query.

DISP:X selector

Description:
This command only selects the DISP:X subsystem. Sending DISP:X alone does nothing.

7-53

Command Reference

DISP:X:APERture[?] command/query

Overlapped: no
Delayed result; no

Pass control required: no
Power-up state: 0.005

Example Statements: curpuT 711;"DISP:B:X:APER 0.01"
OUTPUT 711;"DISPLAY1:X:APERTURE 16PCT"
OUTPUT 711;"Disp:B:X:Apexr?”

Command Syntax: DISPlay[<spec>]:X:APERture<sp> {{<percent>PCT} | <fraction>}

<gpec>u=":A"[:B|1|2
<percent>:;=.5|1|2]|4|8}{16
<fraction>::=0.005]0.01}0.02]0.04{0.08|0.16

Query Syntax: DISPlay[<spec>]:X:APERture?

Returned Format: <fraction><LF>< ~END>

<fraction>::=a decimal number (NR2 format)

Description:

When group delay coordinates are used (DISP:Y:AXIS GDEL), you must select a
phase-smoothing aperture. The greater the aperture you select, the greater will be the
smoothing effect on the displayed data. This command allows you to select an aperture for
the specified display.

The aperture is entered as a percentage or as a fraction of the current frequency span.
DISP:X:APER 0.01 is the same as DISP:X:APER 1PCT. In either case, the value you send is
rounded to the nearest allowable percentage.

The query response indicates which aperture is currently selected for the specified trace.
The value is returned in the fractional form.

7-54

Command Reference

DISP:X:SPACing[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: LIN

Example Statements:
QUTPUT 711;"Digp2:X:Spac Lin"
OUTPUT 711;"DISPLAY1:X:SPACING LOGARITHMIC"
OUTPUT 711;"DISP:X:SPAC?"

Command Syntax: DISPlay[<spec>]:X:SPACing<sp> {LINear| LOGarithmic}
<spec>:=":A~ |:B]1|2

Query Syntax: DISPlay[<spec>]:X:SPACing?
Returned Format: {LIN|LOG}<LF><"END>
Description:

Use this command to specify whether the spacing of data points along the x-axis should be
linear or logarithmic.

The query returns LIN if linear spacing is selected and LOG if logarithmic spacing is selected
for the specified display.

DISP[:Y] selector

Description:
This command only selects the DISP:Y subsystem. Sending DISP:Y alone does nothing.

7-55

Command Reference

DISP[:Y]:AXIS[?] command/query

Qverlapped: no

Delayed result: no

Pass control required: no
Power-up state: LOGM (display A)
REAL (display B)

Example Statements: ouTpuT 711;"DISP:AXIS LINM"
OUTPUT 711;"DisplayZ:¥:Axis Magnitude”
OUTPUT 711;"disp:axis?”

Command Syntax: DISPlay[<spec>1{:Y]:AXIS <sp> <axis>

<gpec>u=":A~ |:B|1|2
<axis>::=GDELay |IMAGinary | LINMagnitude | LOGMagnitude | PHASe | REAL

Query Syntax: DISPlay[<spec>]{:Y]:AXIS?
Returned Format: {GDEL|IMAG |LINM|LOGM |PHAS |REAL} <LF > < ~END>

Description:

This command lets you specify the coordinate system to be used for the specified display:.
(Coordinate systems are referred to as Trace Types on the analyzer’s front panel.)

DISP:Y:AXIS GDEL specifies the group delay coordinate system, which uses time on the
y-axis and frequency on the x-axis. Group delay is related to phase, but shows phase delays
in time rather than degrees of phase shift. The analyzer uses a smoothing aperture to define
the resolution of the group delay display. This coordinate system is not allowed for time
records. See DISP:X:APER for more information.

DISP:Y:AXIS IMAG specifies the imaginary coordinate system, which uses imaginary
numbers for the y-axis and frequency or time for the x-axis. This coordinate system shows
the imaginary component of complex data at each point along the x-axis.. If the data is real
rather than complex, a y value of 0 is displayed for all x-axis points.

DISP:Y:AXIS LINM specifies the linear magnitude coordinate system, which uses magnitude
for the y-axis and frequency or time for the x-axis. In addition, the y-axis scale is spaced
linearly. DISP:Y:AXIS LOGM specifies the logarithmic magnitude coordinate system, which
also uses magnitude for the y-axis and frequency or time for the x-axis. However, the y-axis
scale is spaced logarithmically.

DISP:Y:AXTS PHAS specifies the phase coordinate system, which uses phase for the y-axis
and frequency or time for the x-axis.

DISP:Y:AXIS REAL specifies the real coordinate system, which uses real numbers for the
y-axis and frequency or time for the x-axis. This coordinate system shows real data or the
real component of complex data at each point along the x-axis.

The query response tells you which scaling system is currently selected.

7-56

Command Reference

DISP[.Y]:SCALe selector

Description:

This command only selects the DISP:Y:SCAL subsystem. Sending DISP:Y:SCAL alone
does nothing.

DISP[:Y]:SCAL:AUTO selector

Description:

This command only selects the DISP:Y:SCAL:AUTO subsystem. Sending
DISP:Y:SCAL:AUTO alone does nothing.

DISP[:Y]:SCAL:AUTO:SINGle command

Overlapped: no

Delayed result: no

Pass centrol required: no
Power-up state: not applicable

Example Statements: ouTpuT 711;"DISP:A:SCAL:AUTO:SING”
QUTPUT 711;"Display2:Y:Scale:Auto:Single”

Command Syntax: DISPlay[<spec>]1[:Y]:SCALe: AUTO:SINGle
<sgpec>:u="":A" |:B}]1]2

Description:

This command performs a single autoscale on the specified display. This optimizes y-axis
scaling for that display.

7-57

Command Reference

DISP[:Y]:SCAL:CENTer[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: ourpur 711;"displi:scal:cent 5v”
OUTPUT 711;"DISPLAY:B:Y:SCALE:CENTER -40 DBM"
OUTPUT 711;"Disp:B:Scal:Cent?™
Command Syntax: DISPlayf<spec>1[:Y]:SCALe:CENTer <sp> <value >[<unit>]
<gpec>:;=":A" |:B|1|2
<value>::=a decimal number (NRf format)

<unit>options are listed in Appendix A.

Query Syntax: DISPlay[<spec>][:Y}:SCALe:CENTer?

Returned Format: <value><LF><~END>

<value>:=a decimal number (NRf format)

Description:

This command allows you to define the center of a display’s vertical scale. Changing the
vertical-per-division value (DISP:Y:SCAL:DIV) after using this command will alter the top
and bottom points of the display while keeping the center point fixed.

The unit you can send with this command depends on two things:

* The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE if you do not include a <unit> specifier when you send this command, the
analyzer assumes a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the center point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-58

Command Reference

DISP[:Y]:SCAL:DIVision[?] command/query

Overlapped:
Delayed result:
Pass control required:

10
no
no

Power-up state: variable

Example Statements: ourpur 711;"DISP:SCAL:DIV 5"
QUTPUT 711;"DISPLAY1:Y:SCALE:DIVISION 10"
OUTPUT 711;"displ:scal:div?”

Command Syntax: DISPlay[<spec>]1[:Y]:SCALe:DIVision<sp> < value>[<unit>]

<spec>:=""A"|:B|1]|2

<value>::=any decimal number x, where .001 < x < 100 (when the display units are
referenced to dB)

any decimal number x, where 1 E-36 = x = 1 E36 {when the display units
are not referenced to dB)

<unit>options are listed in Appendix A.

Query Syntax: DISPlay[<spec>][:Y]:SCALe:DIVision?

Returned Format: <value><LF><~END>

< value>::=a decimal number {NRf format)

Description:

Graticule lines divide a display’s vertical axis into eight divisions. Use this command to
define the increment between graticule lines on the specified display’s vertical axis.

The unit you can send with this command depends on two things:

* The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and t
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

he

NOTE if you do notinclude a <unit> specifier when you send this command, the
analyzer assumes a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the current increment between specified display’s graticule lines. Note
that only a value is returned; units are not appended.

7-59

Command Reference

DISP[:Y]:SCAL:REFerence][?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: INP

Example Statements: ouTPUT 711;"DISP:A:SCAL:REF CENT"
OUTPUT 711;"Display:B:Y:Scale:Reference Start”
OUTPUT 711; "DISP2:SCAL:REF?"

Command Syntax: DISPlay[<spec>][:Y]:SCALe:REFerence<sp>
{CENTer |STARt|STOP [INPut}

<gpec>:=":A"|:B|1|2

Query Syntax: DISPlay[<spec>][:Y]:SCALe:REFerence?
Returned Format: {CENT|STAR|STOP|{INP}<LF>< ~END>

Description:

This command lets you use one of three parameters to select the top, center, or bottom of the
specified display as a vertical axis reference point. STOP selects the top, CENT selects the
center, and STAR selects the bottom. The reference point selected with this command
remains fixed when the vertical-per-division value (DISP:Y:SCAL:DIV) is changed.

A fourth parameter, INF, enables automatic reference tracking. Automatie reference
tracking selects vertical scaling values based on the input range of the channel supplying the
measurement data.

Your selection of trace type and measurement data affects reference level tracking. When
the logarithmic magnitude trace type is selected, the top reference is kept at the input range.
When the linear magnitude trace type is selected, the bottom reference is kept at zero.
When the real or imaginary trace types are selected, the center reference is set to 0 (zero).

In addition, when linear magnitude, real, or imaginary trace types are selected, the
vertical-per-division value is changed so that the top reference is = the input range.

(See the DISP:Y:AXIS command for information on specifying the trace type.)

Reference level tracking is not allowed for the phase (DISP:Y:AXIS PHAS) and group delay
(DISP:Y:AXIS GDEL) trace types. It is also not allowed for frequency response, coherence,
and user-defined measurement data. (See TRAC:RES for information on measurement data).

The vertical axis reference point is changed and automatic reference tracking is disabled by
the following commands: DISP:Y:SCAL:CENT, DISP:Y:SCAL:STAR, and
DISP:Y:SCAL:STOP. Reference level tracking is also disabled by these commands:
DISP:Y:SCAL:AUTO:SING and DISP:Y:SCAL:DIV. (When DISP:Y:AXIS is LOGM,
DISP:Y:SCAL:DIV might not disable reference level tracking.)

This command does not allow you to specify a value for the reference point. This must be
done with the DISP:Y:SCAL:CENT, DISP:Y:SCAL:STAR, or DISP:Y:SCAL:STOP command,

The query response tells you what kind of vertical-axis scaling is currently selected.

7-60

Command Reference

DISP[:Y]:SCAL:STARt[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: curpuT 711;"Disp:Scal:Star 10"
OUTPUT 711;"display2:Y¥:scale:start -40dBVrms”
OUTPUT 711;"DISP:A:SCAL:STAR?"
Command Syntax: DISPlay{<spec>][:Y]:SCALe:STARt<sp><value>[<unit>]
<spec>u=":A7 |:B|1]2
<value>::=a decimal number (NRf format)

<unit>options are listed in Appendix A

Query Syntax: DISPlayl <spec>1[:Y]:SCALe:STARt?

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:

This command allows you to define the bottom of a display’s vertical scale. Changing the
vertical-per-division value (DISP:Y:SCAL:DIV) after using this command will alter the top
and center points of the display while keeping the bottom point fixed.

The unit you can send with this command depends on two things:

* The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE If you do not include a <unit> specifier when you send this command, the
analyzer assumes a defauit unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the bottom point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-61

Command Reference

DISP[:Y]:SCAL:STOP|[?] command/query

Overtapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: curpur 711;"pIsSP:a:scaLn:sTor 1°
ouTPUT 711;"display2:Y:scale:stop 1l0dbvrms"®
OUTPUT 711;"Disp:Scal:Stop?”
Command Syntax: DISPlay[<apec>][:Y]:SCALe:STOP <sp> <value>{<unit>]
<spec>u= AT [:B|1]|2
<value>::=a decimal number (NRf format)

<unit>options are listed in Appendix A

Query Syntax: DISPlay[<spec>][:Y}:SCALe:STOP?

Returned Format: <value><LF>< ~END>

<value>::=a decimal number (NRf format)

Description:

This command allows you to define the top of a display’s vertical scale. Changing the
vertical-per-division value (DISP:Y:SCAL:DIV) after using this command will alter the center
and bottom peints of the display while keeping the top point fixed.

The unit you can send with this command depends on two things:

* The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE If you do not include a <unit> specifier when you send this command, the
analyzer assumes a defauit unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the top point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-62

Command Reference

DISP[:Y]:SCAL:UNITs[?] command/query

Overlapped: no

Delayed result: no

Pass controi required: no

Power-up state: "DBVRMS" (display A)
"W (display B}

Example Statements: ourpur 711;"Disp:Scal:Unit ""Deg"""
OUTPUT 711;"DISPLAY2:Y:SCALE:UNITS ‘DBVPK'”
CUTPUT 711;"displ:scal:unit?”

Command Syntax: DISPlay[<spec>][:Y]:8CALe:UNITs<sp>{"|"} <unit>{"|"}
<gpec>u="":A"[:B]|1|2

<unit>options are listed in Appendix A

Query Syntax: DISPlay[<spec>1{:Y]:SCALe:UNITs?
Returned Format: "<unit>"<LF>< ~END>

Description:
Use this command to select a unit for the specified display’s y-axis.

The unit you can send with this command depends on two things:

¢ The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

The query returns the y-axis unit currently being used for the specified trace.

7-63

Command Reference

7-64

Frequency —
Marker

FREQuency

Command Reference

subsystem

Description:

Commands in this subsystem are used to define the band of frequencies you want to analyze.

NOTE

The amplitude accuracy of the HP 35660A is specified to a maximum of 102.4 kHz
in the one-channel measurement mode and 51.2 kHz in the two-channel mode.
However, commands in this subsystem allow you to define the band of frequencies
in such a way that frequencies greater than the maximums are displayed. The

ampilitude accuracy of frequencies exceeding the specified maximums is
not guaranteed,

7-685

Command Reference

FREQ:CENTer[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state; 51200

Example Statements: outpuT 711;"FREQ:CENT 100"
OUTPUT 711;"FREQUENCY:CENTER 98KHZ"
OUTPUT 711;"Fregq:Cent?”

Command Syntax: FREQuency:CENTer <sp> <value>[<unit>]

<value>::=any number between 0 and max_disp _freq
Send numbers in the NRf format.

max_disp_freq::=115,000 for 1-channel measurements,
57,5600 for 2-channel measurements

<unit>:;="HZ~ |KHZ

Query Syntax: FREQuency:CENTer?

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:

This command specifies the center of the band of frequencies you want to analyze. The
values of FREQ:CENT and FREQ:SPAN completely define the band. When you send this
command, the value of FREQ:STAR is automatically adjusted (if necessary) so that the
following formula is true:

FREQ:STAR=FREQ:CENT—(FREQ:SPAN/2)

The same formula continues to adjust the value of FREQ:STAR each time FREQ:CENT or
FREQ:SPAN is changed. This remains true until you explicitly set the value of FREQ:STAR
or until you send FREQ:REF STAR, at which point FREQ:CENT becomes the value that is
automatically adjusted.

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:CENT. The nonnumeric parameters are:

* UP —increases the current value of FREQ:CENT by the amount specified in
FREQ:CENT:STEP

* DOWN - decreases the current value of FREQ:CENT by the amount specified in
FREQ:CENT:STEP

* (MARK[:A|:B]:VAL) — sets FREQ:CENT to the frequency of the main marker,
even when the marker reference is enabled

The query returns the current center of the band of frequencies being analyzed. The value is
returned in Hz,

7-66

Command Reference

FREQ:CENT:STEP[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 2000

Example Statements: ouTpur 711;"Freq:Cent:Step 5"
ouTPUT 711;"frequency:center:step 2khz"
QUTPUT 711;"FREQ:CENT:STEP?"

Command Syntax: FREQuency:CENTer:STEP <sp> <value>[<unit>]

<value>:=any x, where 0 < x < 51.2 kHz for a one-channel measurement
any x, where 0 < x < 25.6 kHz for a two-channel measurement
<unit>:="HZ™ |KHZ

Query Syntax: FREQuency:CENTer:STEP?

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:

FREQ:CENT and FREQ:STAR can both be increased or decreased by a certain amount. The
amount, called a step, is defined by this command,

You can either use a number or the parameter (MARK[:A |:B]:VAL) to set the step.
(MARK:VAL) sets the step to one of two values depending on the marker mode selected:

* When MARK:X:MODE is NORM, (MARK:VAL) sets the step to the value of the
main marker.

* When MARK:X:MODE is DELT, (MARK:VAL) sets the step to the difference
between the marker reference value and the main marker value.

The query returns the step currently specified. The value is returned in Hz.

767

Command Reference

FREQ:REFerence commands/query

Overlapped: no
Delayed Result: no

Pass control required: no
Power-up state: STAR

Example Statements: ourpur 711; "freq:ref star"
OUTPUT 711; “FREQUENCY;REFERENCE CENTER"
OUTPUT 711; "Fregq:Ref?”

Command Syntax: FREQuency:REFerence <gp> {CENTer|{STARt}

Query Syntax: FREQuency:REFerence?
Returned Format: {CENTI!STAR} <LF> < ~END>
Description:

When you change the analyzer’s frequency span or time record length, the value of either
FREQ:CENT or FREQ:STAR must be adjusted. This command lets you specify which of the
two values should be held constant when such a change occurs.

If FREQ:REF is CENT, FREQ:CENT is held constant and FREQ:STAR is adjusted to make
the following formula true:

FREQ:STAR = FREQ:CENT—(FREQ:SPAN/2)

IfFREQ:REF is STAR, FREQ:STAR is held constant and FREQ:CENT is adjusted to make
the following formula true:

FREQ:CENT = FREQ:STAR + (FREQ:SPAN/2)

7-68

Command Referance

FREQ:SPAN[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 102400

Example Statements: ocurpur 711;"Freq:span 100"
QUTPUT 711;"Frequency:Span 10kHz"
OUTPUT 711;"freqg:span?”

Command Syntax: FREQuency:SPAN <sp> <value>{<unit>]

<value>:=any x, where x=max_span/2n
max_span::=102,400 for one-channel measurements,
51,200 for two-channel measurements
n::=an integer from 0 through 19
<unit>:="HZ™ |KHZ

Query Syntax: FREQuency:SPAN?

Returned Format: <value><LF><~END>
<value>::=a decimal number (NRf format)

Description:

This command specifies the width of the band of frequencies you want to analyze. The value
of FREQ:SPAN is used together with either FREQ:CENT or FREQ:STAR to completely
define the band.

When you send this command, two other values are adjusted. SWE:TIME is adjusted so the
following formula is true:

SWE:TIME =400/FREQ:SPAN

The other value that is adjusted is either FREQ:CENT or FREQ:STAR, depending on which
of the two values was last set. The value last set remains fixed while the other is adjusted to
make the following formula true:

FREQ:SPAN=(FREQ:CENT-FREQ:STAR)x2

7-69

Command Reference

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:SPAN. The nonnumeric parameters are:

+ UP - increases FREQ:SPAN span to the next largest allowable value
* DOWN - decreases FREQ:SPAN span to the next smallest allowable value

* (MARKI[:A|:B]:VAL) — sets FREQ:SPAN to the closest allowable span that
satisfies the following formula:

FREQ:SPANz(MARK:VAL)

« (MARK:VAL) will equal one of two values, depending on the marker mode
selected. When MARK:X:MODE is NORM, (MARK:VAL) equals the value of the
main marker. When MARK:X:MODE is DELT, (MARK:VAL) equals the absolute
value of the difference between the marker reference value and the main
marker value,

The query returns the width of the band of frequencies currently being analyzed. The value
is returned in Hz.

FREQ:SPAN:FULL command

Overlapped: no

Delayed resuit: yes

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"FREQ:SPAN:FULL"
OUTPUT 711;"Frequency:Span:Full"

Command Syntax: FREQuency:SPAN:FULL

Description:

This command sets the start frequency (FREQ:STAR) to 0 Hz and the frequency span
{FREQ:SPAN) to the largest allowable value. For one-channel measurements, the largest

allowable span is 102.4 kHz. For two-channel measurements, the largest allowable span
is 51.2 kHz.

7-70

Command Reference

FREQ:STARt[?] command/query

Overlapped: no

Pelayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"freq:star 10"
OUTPUT 711;"FREQUENCY:START S50KHZ"
OUTPUT 711;"FREQ:S5TAR?"

Command Syntax: FREQuency:STARt<sp> <value>[<unit>]

<value>:=any x, where 0 < x < max_disp_freq - (min_span/2)
Send numbers in the NRf format.
max_disp_freq::=115,000 Hz for one-channel measurements,
57,600 Hz for two-channel measurements
min_span::=0,1953 Hz for one-channel measurements
0.09766 Hz for two-channel measurements
<unit>n="HZ~ |KIHZ

Query Syntax: FREQuency:STARt?

Returned Format: <value><LF>< ~END>

<value>::=a decimal number (NRf format}

Description:

This command specifies the start of the band of frequencies you want to analyze. The values
of FREQ:STAR and FREQ:SPAN completely define the band.

The value you send with this command also determines whether the analyzer is in the
baseband or zoom mode measurement mode. When FREQ:STAR is 0 Hz, the analyzer is in
baseband mode and time-domain data is real. When FREQ:STAR is anything other than 0
Hz, the analyzer is in zoom mode and time-domain data is complex.

When you send this command, the value of FREQ:CENT is automatically adjusted
(if necessary) so that the following formula is true:

FREQ:CENT=FREQ:STAR+(FREQ:SPAN/2)

The same formula continues to adjust the value of FREQ:CENT each time FREQ:STAR or
FREQ:SPAN is changed. This remains true until you explicitly set the value of FREQ:CENT
or until you send FREQ:REF CENT, at which point FREQ:STAR becomes the value that is
automatically adjusted.

7-71

Command Reference

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:STAR. The nonnumeric parameters are:

* UP - increases the current value of FREQ:STAR by the amount specified in
FREQ:CENT:STEP

* DOWN - decreases the current value of FREQ:STAR by the amount specified in
FREQ:CENT:STEP

* (MARK[:A|:B]l:VAL) - sets FREQ:STAR to the frequency of the main marker,

even when the marker reference is enabled

The query returns the current start of the band of frequencies being analyzed. The value is
returned in Hz.

772

Command Reference

GPIB subsystem

Description:

Special fields on the analyzer’s screen allow front-panel operators to monitor certain HP-IB
functions. Commands in this subsystem are used to enable and disable display of these fields.

GPIB:LEDS|[?] command/query

Qverlapped: no

Delayed resuilt: no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"Gpib:Leds 0"
OuTPUT 711;"gpib:leds on”
OUTPUT 711;"GPIB:LEDS?"

Command Syntax: GPIB:LEDS<sp>{OFF |ON|0|1}

Query Syntax: GPIB:LEDS?
Returned Format: {0|1}<LF><~END>
Description:

Use this command to enable the display of the four HP-IB status indicators. When enabled,
the indicators will appear in the upper-right corner of the analyzer’s screen.

The indicators are Rmt, Tik, Ltn, and Srq. Rmt brightens when the analyzer is under the
control of an external controller. Tlk brightens when the analyzer is addressed to talk. Ltn
brightens when the analyzer is addressed to listen. Srq brightens when the analyzer has
issued a service request.

The query returns 0 if the status indicators are off, 1 if they are on.

7-73

Command Reference

GPIB:MNEMonic[?] command/query

Overlapped: no

Defayed result: no

Pass control required: no
Power-up state; OFF

Example Statements: ourpur 711;"cPIB:MNEM ECHO"
OUTPUT 711;"GPIB:MNEMONIC SCROLL"
OUTPUT 711;"Gpib:Mnem?"

Command Syntax: GPIB:MNEMonic<sp>{ECHO|OFF |SCRoll}
Query Syntax: GPIB:MNEMonic?
Returned Format: {ECHO|OFF|SCR}<LF><"~END>

Description:

A field in the upper-left portion of the analyzer’s screen can be enabled to provide
information on HP-IB commands. Use this command to enable the information field and to
specify the type of HP-IB information you want displayed. The options are:

* OFF — This disables the information field.

+ ECHO - This enables the information field and specifies that HP-IB
programming mnemonics should be echoed to the field in response to front-panel
key presses or to bus commands, ECHO is used most often to determine which
HP-IB programming mnemonic is equivalent to a particular front-panel
key sequence.

* SCR - This enables the information field and specifies that characters being sent
to the analyzer over the bus should be scrolled into the field. As new characters
are received, they are added to the right of the field, Old characters are scrolled
off the screen to the left. When the analyzer’s command parser recognizes an
error, an all-white character is placed in the field. The all-white character is
placed just after the character on which the error was recognized.

NOTE HP-IB transfers are much slower when SCR is selected. It should only be used
when you are debugging programs or checking the integrity of bus transfers.

The query response tells you which option is currently selected.

7-74

Command Reference

INITialize subsystem

Description:
The single command in this subsystem is used to start, pause, and continue a measurement.

INIT:STATe[?] command/query

Overlapped: yes
Delayed result: no

Pass control required: no
Power-up state: RUN

Example Statements: outpuT 711;"Init:Stat Run"
OUTPUT 711;"Initialize:State Start”
ouTPUT 711;"init:stat?"

Command Syntax: INITialize:STATe<sp>{PAUSe | RUN|STARt}

Query Syntax: INITialize:STATe?
Returned Format: {PAUS|RUN}<LF>< ~END>
Description:

This command is used to start, pause or continue a measurement.

NOTE INIT:STAT STAR and INIT:STAT RUN are considered to be pending overlapped
commands whenever bit 7 of the Device Status condition register is setto 1. See
Chapter 5 for a description of that bit.

INIT:STAT STAR starts a new measurement and ensures that changes made with delayed
result commands are reflected in the measurement results. The new measurement is started
immediately whether the current measurement is running, paused, or completed. All data
from the previous measurement is discarded when the new measurement is started.

INIT:STAT PAUS pauses the current measurement. If the measurement is averaged, the
current average is completed before the measurement is paused.

INIT:STAT RUN continues a paused measurement. It also allows you to add more data to
the running average of a completed measurement. For example, if the analyzer has
completed a 10-average measurement and you send INIT:STAT RUN, 10 more records are
averaged in with the old data, bringing the total number of averages to 20.

If you send AVER:INIT followed by INIT:STAT RUN, the result is the same as if you send
INIT:STAT STAR.

The query indicates whether the measurement is currently paused or running.

7-75

Command Reference

7-76

Command Reference

INPut subsystem

Description:
Commands in this subsystem are used to configure the inputs for channel 1 and channel 2.

Because there are two channels, you need to specify the channel you want to configure when
you send a command. To specify the channel, append 1 or 2 to the word INPUT or to its
short form INP. When you don’t explicitly specify one of the channels in this manner, the
analyzer configures channel 1.

NOTE The HP 35660A has two Input channels (1 and 2) and two displays (A and B).
However, neither of the two channels is linked to a particular display. You can
display channel-1 data in either display A or display B. The same is true for
channel-2 data.

INP:COUPIing[?] command/query

Overlapped: no

Delayed result: yes

Pass control reguired: no
Power-up state; DC

Example Statements: ourrur 711;“INP1:COUP AC”
OQUTPUT 711;"Input2:Coupling dc”
oUTPUT 711;"Inpl:Coup?”

Command Syntax: INPut[~ 1~ |2]:COUPling<sp>{AC|DC}

Query Syntax: INPut[~ 1~ |2):COUPling?
Returned Format: {AC|DC}<LF>< "~ END>
Description:

This command selects AC or DC coupling for the specified channel.

The query response tells you whether AC or DC coupling is currently selected for the
specified channel.

7-77

Command Reference

INP:IMPedance[?] command/query

Overfapped: no

Celayed result; yes

Pass control required: no
Power-up state: 50

Example Statements: ourpur 711;"INP1:IMP 50"
OUTPUT 711;"INPUTZ:IMPEDANCE .333"
QUTPUT 711;"Inp2:Imp?™

Command Syntax: INPut[~ 1~ {2]:IMPedance<sp> <chms>[<unit>]

<ohms>:=any x, where 10E-3 = x < 10E+6 (when units are ohms)
Send values in NRf format.
<gnit>:;;="0HM~ |KOHM |MOHM

Query Syntax: INPut[~ 1~ |2):IMPedance?

Returned Format: <value>»<LF>< ~END>

<value>::=a decimal number (NRf format)

Description:

Use this command to enter the impedance to be used for dBm calculations. The value you
select is used for both channels regardless of the channel you specify.

You can either use numbers or one of two nonnumeric parameters to set the value of
INP:IMP The nonnumeric parameters are:

e UP - changes the current value of INP:IMP to the next largest value defined by
the analyzer (The analyzer defines input impedance values that are 1, 2, and 5
times the powers of 10 that fall within the acceptable range.)

* DOWN - changes the current value of INP:IMP to the next smallest value
defined by the analyzer

The query returns the impedance value currently being used for dBm calculations. The value
is returned in ohms.

7-78

Command Reference

INP:LOW[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state; GRO

Example Statements: ocurpur 711;"inpl:low gro"
OUTPUT 711;"INPUT2:LOW FLQ"
OUTPUT 711;"INP2:LOW2"

Command Syntax: INPut{~ 1~ |2):LOW<sp>{FLOat|GROund}

Query Syntax: INPut[~ 1~ |2::LOW?
Returned Format: {FLO|GRO}<LF>< ~END>
Description:

Use this command to float or ground the specified channel’s input shield.

A floated input shield is connected to ground through 1 Megohm. A grounded shield is
connected to ground through 55 ochms.

The query returns FLO if the specified input’s shield is floated, GRO if it is grounded.

7-79

Command Reference

INP:RANGe[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: variable

Example Statements: ourrur 711;"Inp2:Rang 10"
OUTPUT 711;"inputl:range 6.2dbm"
QUTPUT 711;"INPl:RANG?"

Command Syntax: INPut[~ 1~ |21:RANGe<sp> <value>[<unit>]

<value>::=a decimal number (NRf format)
<unit>:;="V~ |VRMS|DBM |DBVPK|DBVRMS {(when INP:UNIT is VOLT)
~EU~ |EURMS|DBEUPK |DBEURMS (when INP:UNIT is EU)

Query Syntax: INPut[~ 1~ |2:RANGe?
Returned Format: <value><LF><"~END>
Description:

Use this command to enter a range for the specified channel.

Valid input ranges are from 27 through —51 dBVrms in 2 dB steps. If you send a value with
this command, it is rounded up to the next highest range. If you do not specify units when
you send a new value, the default unit is assumed.

You can either use a number or one of the three nonnumeric parameters to set the value of
INP:RANG. The nonnumeric parameters are:

* UP - changes INP:RANG to the next highest valid range

* DOWN - changes INP:RANG to the next lowest valid range

* (MARK[:A|:B]:VAL) — sets INP:RANG to the nearest value that is greater than
or equal to the amplitude of the main marker, even when the marker reference
is enabled

NOTE You can specify a new value for the channel-2 range while you are in the
one-channel measurement mode. However, the value is not used to set the
channel-2 range until you enter the two-channel mode.

The query response tells you which range is currently selected for the specified channel.
The value is returned in the units last used to set the range.

7-80

Command Reference

INP:RANG:AUTO[?] command/query

Overlapped: yes
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"Inpl:Rang:Auto 1"
OUTPUT 711;"Input2:Range:Auto On"
oUTPUT 711 "INP:RANG:AUTO?"

Command Syntax: INPut[~ 1~ {2:RANGe:AUTO: <gp> {OFF|ON|0] 1}

Query Syntax: INPut {~ | 7 [2}:RANGe:AUTO?
Returned Format {0]1} <LF> < ~END>
Description:

This command enables and disables the autoranging routine for the specified channel.

NOTE The analyzer never autoranges while an averaged measurement is in progress.

The autorange routine starts by selecting the lowest input range. It then steps the input up
through successive ranges until the input is no longer overloaded. The routine continues to
adjust the range upward in response to increased signal amplitude.

The autorange routine never adjusts the range downward in response to decreased signal
amplitude. You must restart the autorange routine if you think the range is too large for the
current input signal. Sending INP:RANG:AUTO ON restarts the autorange routine, even if
autoranging is already turned on.

Autoranging is disabled in one of the following ways:
+ Sending INP:RANG:AUTO OFF (or O)
« Specifying a range with the INP:RANG command

If you use INP:RANGE:AUTO OFF to disable autoranging, the range is fixed at the last
value selected by the autoranging routine.

The query returns 0 if autoranging is disabled, 1 if it is enabled.

7-81

Command Reference

INP:UNITs[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: VOLT

Example Statements: ourpur 711;"INPl:UNIT EU”
OUTPUT 711;"Input2:Units Volt"
OUTPUT 711;"Impl:Unit?”

Command Syntax: INPut[~ 1~ |21:UNITs<sp>{EU|VOLT}
Query Syntax: INPut[~ 1~ |2]:UNITs?
Returned Format: {EU|VOLT}<LF=>< "~ END>

Description:
The analyzer allows you to specify input ranges and vertical scaling parameters in either
volts or engineering units. Use this command to select the kind of units you want to use.

Use INP:UNIT:EU:MULT to specify a scaling factor (V/EU) for relating EU values to volts.
Use INP:UNIT:EU:NAME to enter the name of the engineering unit you are using. The
name is used to label the vertical axis of trace displays.

The query response indicates whether input range and vertical scaling parameters are
currently being interpreted in volts or engineering units.

INP:UNIT:EU selector

Description:

This command only selects the INP:UNIT:EU subsystem. Sending INP:UNIT:EU alone
does nothing.

7-82

Command Reference

INP:UNIT:EU:MULTiplier[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 1

Example Statements: ourpuT 711;"inpl:unit:eu:mult 1"
QUTPUT 711;"INPUT2:UNITS:EU:MULTIPLIER 1.5"
OUTPUT 711;"INP2:UNIT:EU:MULT?"

Command Syntax: INPut[~ 1~ |2]:UNITs:EU:MULTiplier <sp> <volts_per_eu>

<volts_per_eu>:=a decimal number (NRf format)

Query Syntax: INPut{~ 1~ |2]:UNITs:EU:MULTiplier?
Returned Format: <volts_per_eu><LF><"~END>

Description:

This command allows you to specify an engineering unit (EU) scaling factor. The factor you
enter represents the number of volts per engineering unit (V/EU).

The EU scaling factor is only used when INP:UNIT is set to EU. When used, the factor
relates engineering unit values to volts measured at the specified input channel.

The query returns the scaling factor currently being used for the specified channel.

7-83

Command Reference

INP;UNIT:EU:NAME[?] command/query

Overtapped: no

Delayed result: yes

Pass control required: no
Power-up state: "EU"

Example Statements: ouTPuT 711;"INP1:UNIT:EU:NAME "“KNOT"""
OUTPUT 711;"INPUT1:UNITS:EU:NAME ‘'g’'"
QUTPUT 711;"Inpl:Unit:Eu:Name?”

Command Syntax: INPut[~ 1~ |2:UNIT:EU:NAME<gp>{'|"} <name>{"|"}

<name>::=1 to 8§ ASCII characters

Query Syntax: INPut[~ 1~ |21 UNIT:EU:NAME?
Returned Format: "<name>"<LF>< ~END>

Description:

This command allows you to enter 2 name for the specified channel’s engineering units.
The name is used to label the vertical axis of trace displays when INP:UNIT is set to EU.

The following unit labels are reserved and cannot be entered as an engineering unit label:

VRMS, V™2, VRMS ™ 2, V™ 2/HZ, V/RTHZ, VRMS ™ 2/HZ, VRMS/RTHZ, DB, DBM/HZ,
DBVPK, DBVRMS, DBM, DBVPK/RTHZ, DBVRMS/RTHZ.

The query returns the engineering unit name last entered for the specified channel.
The name is returned as an ASCII character string.

7-84

Command Reference

LIMit subsystem

Description:

This subsystem provides access to limit tables over the HP-IB. It does not provide access to
the result of limit tests. For limit test results, see the DISPlay subsystem.

LIM:TABLe[?] command/query

Description:
As aresult, LIM:TABL is functionally equivalent to LIM:TABL:DATA. See the latter
command for more details,

7-85

Command Reference

LIM:TABL[:DATA][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0 (x_start)
0 (x_stop)

0 (y_stan)

0 (y_stop)

2 {y_flag)

Example Statements: ourpur 711;"Liml:Tabl 2000,3000,.3,.5,2"
OUTPUT 711;"limit7:table:data 50,55,.1,.45,1"
OUTPUT 711;"LIM:TABL:DATA?Z"

Command Syntax: LIMit[<table#>]:TABLe[:DATAl<sp> <block_data>

<table#>:=1 through 8 (NRf format)

<block_data> takes one of two forms depending on whether you are sending ASCII-encoded
or binary-encoded data. When data is ASCII-encoded, (LIM:TABL:HEAD:AFOR ASC):

<block_data>:={<segment>}. . <segment><LF><~END>
<segment>:=<x_start>,<x_stop>,<y start>,<y stop>,<y flag>
Send these values for as many segment as you plan to define.

Send all values in the NRf format and separate them with commas.

When data is binary-encoded, (LIM: TABL:HEAD:AFOR FP32 or LIM:TABL:HEAD:
AFOR FP64):

<block_data>:=#<byte> <length bytes> {<segment>}...
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<segment>:=<x_start><x_stop><y_start><y stop><y_flag>

Send all values as either 32-bit or 64-bit binary floating point numbers
{depending on the setting of LIM:TABL:HEAD:AFOR).

Query Syntax: LIMit<table#>:TABLe[:DATA]?
Returned Format: <block_data>
NOTE To determine the number of segments that will be returned in <block_data>, use

the LIM:TABL:HEAD:POIN query.

7-86

Command Reference

Description:

Use this command to define the specified limit table. The table can then be coupled to one of
the displays, and data in the display can be tested against the defined limits.

Each <segment> in a limit table defines a line segment. Each line segment serves as an
upper or lower boundary for acceptable y-axis values over a certain range of x-axis values.
You send as many segments as are required to define the limits.

Each segment consists of an x_start, x_stop, y_start, y_stop, and y_flag value. The x_start
and y_start values define the beginning point of a line segment on the coordinate plane.

The x_stop and y_stop values define the ending point of the segment on the coordinate plane.
The y_flag value indicates whether the segment defines the upper or lower boundary of
acceptable y-axis values, 2 being upper, 1 being lower.

You define limits assuming that the data to be tested will be displayed using a particular
x-axis unit and y-axis unit. However, limit table values are actually unitless. A y_start value
of 4, for example, will be 4 dBVrms if data is displayed using dBVrms on the y-axis. It will be
4 degrees if data is displayed using degrees on the y-axis. So before you test data against a
limit table, you must be sure that display units are the same as the units you assumed when
defining the table.

The query returns all segments currently defined for the specified limit table. The format of
the returned data depends on the setting of LIM:TABL:HEAD:AFOR.

LIM:TABL:HEADer selector

Description:

This command only selects the LIM:TABL:HEAD subsystem. Sending LIM:TABL:HEAD
alone does nothing.

7-87

Command Reference

LIM:TABL:HEAD:AFORmat[?] command/query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: ASC

Example Statements: ourpuT 711;"Lim2:Tabl:Head:Afor Asc”
OUTPUT 711;"Limit8:Table:Header:Aformat Fp64"
OUTPUT 711;"lim:tabl:head:afor?”

Command Syntax: LIMit[<table #>]:TABLe:HEADer: AFORmat<sp>{ASCii |FP32|FP64}
<table#>:=1 through 8 (NRf format)

Query Syntax: LIMit{<table #>]:TABLe:HEADer:AFORmat?
Returned Format: {ASC|FP32|FP64}<LF>< ~END>

Description:

Limit tables can either be ASCII-encoded or binary-encoded when they are transferred
between the analyzer and an HP-IB controller. This command lets you specify how the
display data should be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a series
of values within a definite length block. The values are encoded as 32-bit binary floating
point numbers. When FP64 is selected, data is also sent as a series of values within a definite
length block. However, the values are encoded as 64-bit binary floating point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64 depending on the option currently specified.

7-88

LIM:TABL:HEAD:POINts?

Command Reference

query

Example Statement: ourpur 711;"LIM:TABL:HEAD:POIN?"

Query Syntax: LIMit[<table #>]:TABLe:HEADer:POINts?
<table#>::=1 through 8 (NRf format)

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Overlapped: no

Defayed result: no

Pass control required: no
Power-up state: 1

A limit table returns segments in response to the LIM:TABL:DATA query. Use this query
(LIM:TABL:HEAD:POIN) to determine how many segments will be returned from the

specified limit table.

7-89

Command Reference

7-80

Command Reference

MARKer subsystem

Description:
Commands in this subsystem are used to access the analyzer’s marker functions and
marker data.

With a few exceptions, marker commands must be directed to one of the two displays: A or B.
To specify a display, insert one of the following between the MARKER or MARK and the rest
of the command:

* :A-asin MARK:A:BAND:CENT 51200

e :B-as in MARKER:B:-HARMONIC:POWER?
e 1-asin MARKERL:X:AUTO OFF

e 2 —asin MARK2:X:POIN?

Using :A or 1 directs the command to display A. Using :B or 2 directs the command to display
B. If you don’t explicitly specify one of the displays, the command is directed to display A.

NOTE The display to which you direct a command becomes the active display.

Two marker functions that are not found in this subsystem are limit tables and data tables.
Limit table commands are found in the DISPlay and LIMit subsystems. Data table
commands are found in the TRACe subsystem.

MARK:BAND selector

Description:

This command only selects the MARK:BAND subsystem. Sending MARK:BAND alone
does nothing.

7-91

command Reference

MARK:BAND:CENTer[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 51200

Example Statements: curpur 711;"markl:band:cent 100hz"
OUTPUT 711;"MARKER:B:BAND:CENTER 51.2KHZ"
OUTPUT 711; “MARK:BAND:CENT?"

Command Syntax: MARKer{<spec>]:BAND:CENTer <sp> <value>[<unit>]
<gpec>;=":A"|:B|1]2

<value>::=any x, where 0 < x < 115 kHz for a 1-channel measurement.
any x, where 0 < x < 57.5 kHz for a 2-channel measurement.
Send all numbers in NRf format.
<unit>:="HZ~ |KHZ

Query Syntax: MARKer[<spec>}:BAND:CENTer?
Returned Format: <value> <LF>< ~END>
Description:

This command defines the center of a band frequencies in which power is to be calculated.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:CENT. The nonnumeric parameters are:

* UP - steps MARK:BAND:CENT to the value of the next largest point on
the x-axis

* DOWN - steps MARK:BAND:CENT to the value of the next smallest point on
the x-axis

* (MARK[:A|:B]:VAL) - sets MARK:BAND:CENT to the frequency of the main
marker, even when the marker reference is enabled

NOTE When you change the value of MARK:BAND:CENT, the values of
MARK:BAND:STAR and MARK:BAND:STOP are changed by the same amount.
This shiits the entire band up or down in frequency.

The query returns the center frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

792

MARK:BAND:POWer?

Command Reference

query

Example Statement: ouTPUT 711;"MARK:A:BAND:POW?"

Query Syntax: MARKer[<spec>]:BAND:POWer?
<spec>u=":A"[:B]|1|2

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:

Overfapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Power can be calculated for the band of frequencies defined by the band markers. This query

returns the results of the power calculation.,

Power is calculated as an rms summation of the power at each frequency within the band. In
order for this query to return the result of a power calculation, MARK:BAND:STAT and
MARK:BAND:POW:STAT must be ON. The result is converted to the current vertical unit

(DISP:Y:SCAL:UNIT) after power is calculated.

The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-83

Command Raference

MARK:BAND:POW:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"Mark:Band:Pow:Stat 0"
QUTPUT 711;"marker:band:power:state on"
QUTPUT 711;"MARK:BAND:POW:STAT?Z?"

Command Syntax: MARKer[<spec>]:BAND:POWer:STATe<sp>{OFF|ON|0|1}
<spec>:=":A7|:B|1|2

Query Syntax: MARKer{ <spec>]:BAND:POWer:STATe?
Returned Format: {0j1}<LF><~END>

Description:

Use this command to enable or disable the band power calculation. When enabled,
power is calculated for the band of frequencies defined by the band markers and the results
of the calculation are displayed on the analyzer’s screen. See MARK:BAND:POW for

more information.

The query returns 0 if the band power calculation is disabled for the specified display, 1 if
it is enabled.

7-94

Command Reference

MARK:BAND:STARt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 46080

Example Statements: ourpuT 711;"Mark2:Band:Star 1kHz"
ouTPUT 711;*Marker:Band:Start S7hz”
OUTPUT 711;"markl:band:star?”

Command Syntax: MARKer[<spec>]:BAND:STARt<sp> <value>[<unit>]
<spec>u=":A7]|:B|1}2
<value>:=any x, where 0 < x < 115 kIz for a one-channel measurement.
any x, where 0 = x < §7.5 kHz for a two-channel measurement.

Values must be decimal numbers in NRf format.
<unit>:="HZ™ |KHZ

Query Syntax: MARKer[<spec>]:BAND:STARt?
Returned Format: <value><LF>< ~END>
Description:

This command defines the lowest frequency of the band in which power is to be calculated.
You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:STAR. The nonnumeric parameters are:

* UP -steps MARK:BAND:STAR to the value of the next largest point on
the x-axis

* DOWN - steps MARK:BAND:STAR to the value of the next smallest point on
the x-axis

¢ (MARK[:A[:B1:VAL) - sets MARK:BAND:STAR to the frequency of the main
marker, even when the marker reference is enabled

The query returns the lowest frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

7-95

Command Reference

MARK:BAND:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTpuT 711;"MARK2:BAND:STAT OFF"
OUTPUT 711;"Marker:B:Band:State 1"
QUTPUT 711;"Mark:B:Band:Stat?”
Command Syntax: MAREKer{<spec>]:BAND:STATe<sp> {OFF|ON|0|1}

<spec>u=":A7|:B|1|2
Query Syntax: MARKer[<spec>):BAND:STATe?
Returned Format: {0|1}<LF><"~END>

Description:

This command enables and disables the band markers. Band markers must be enabled
(MARK:BAND:STAT ON) before the results of a band power calculation can be returned.
See MARK:BAND:POW for more information.

At any given time, only one of the following markers can be active in the specified display:
* Band (MARK:BAND:STATE)
* Harmonic (MARK:HARM:STATE)
+ Sideband (MARK:SID:STATE)

If you enable the band markers when one of the other two is already enabled, that other
marker is automatically disabled.

The query returns 0 if the specified display’s band markers are disabled, 1 if they are enabled.

7-86

Command Reference

MARK:BAND:STOP[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 56320

Example Statements: ouvrpur 711;"mark:a:band:stop 10000 Hz"
CGUTPUT 711;"MARKER]:BAND:STOP 75KHZ"
CUTPUT 711; "MARK1:BAND:STOP?"

Command Syntax: MARKer[<apec>]:BAND:STOP <sp> <value>[<unit>]
<spec>u=":A~ |:B|1|2

<value>.=any x, where 0 < x < 115 kHz for a one-channel measurement.
any x, where () < x = 57.5 kHz for a two-channel measurement.
Values must be decimal numbers in NRf format.
<unit>n="HZ~ |KHZ

Query Syntax: MARKer[<spec>}:BAND:STOP?
Returned Format: <value><LF><~END>
Description:

This command defines the highest frequency of the band in which power is to be calculated.
You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:STOP. The nonnumeric parameters are:

* UP - steps MARK:BAND:STOP to the value of the next largest point on
the x-axis

* DOWN - steps MARK:BAND:STOP to the value of the next smallest point
on the x-axis

¢ (MARK[LA |:BL1:VAL) - sets MARK:BAND:STOP to the frequency of the main
marker, even when the marker reference is enabled

The query returns the highest frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

787

Command Reference

MARK:DTABIe command

Description:

MARK:DTAB is functionally equivalent to MARK:DTAB:DATA. See the latter command for
more details.

MARK:DTAB[:DATA][?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0,0

Example Statements: ouTPuT 711;"MARKER:DTABLE:DATA 12800,25600"
OUTPUT 711;"MARK2:dtab:data?"

Command Syntax: MAREKer[<spec>]:DTABle[:DATA] <sp><black_data>
<gpec>n=""A"[:B|1|2

<block_data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASClI-encoded (MARK:DTAB:HEAD:AFOR ASC):

<block_data>:={<x_value>}..<x value n><LF>< "~ END>
<x_value>:=x-axis values for the 1% through n'h points

Send values using the NRf format. The values you send are understood to be in the current
display units.
When data transfers are set to binary (MARK:DTAB:HEAD:AFOR FP32 or
MARK:DTAB:HEAD:AFOR FP64):

<block_data>::=#<byte><length_bytes>{<x value>}..

<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCll-encoded bytes that specify the number of data bytes to follow

<x_value> has the same definition specified for ASCII-encoded data. However, you should
send it as either a 32-bit or a 64-bit binary floating point number, depending on how you
have set MARK:DTAB:HEAD:AFOR.

Query Syntax: MARKer]<spec>]:DTABle[:DATA]?

7-98

Command Reference

Returned Farmat: <block data>

<block_data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASCII-encoded (MARK:DTAB:HEAD:AFOR ASC):

<block_data>::={<point>,}...<point n><LF><~END>
<point>:=<x_value>, <y value>

<x_value>:=x-axis values for the 1% through ath points (n is returned with the
MARK:DTAB:HEAD:POIN query)

<y_value>:=y-axis values for the 1 through 'k peints

Values are returned in the NRf format. Units for the values are the current display units.

When data transfers are set to binary MARK:DTAB:HEAD:AFOR FP32 or
MARK:DTAB:HEAD:AFOR FP64):

<block_data>:=#<byte> <length_bytes>{<point>}...
<hyte>::=one ASClI-encoded byte that specifies the number of length bytes to follow
<length bytes>:=ASCII-encoded bytes that specify the number of data bytes to follow
<point>:1=<x_value> <y value>

<x_value> and <y_value> have the same definition specified for ASCII-encoded data.
However, they are returned as either 32-bit or 64-bit binary floating point numbers,
dependmg on the setting of MARK:DTAB:HEAD:AFOR.

Description:
Use this command to define a data table for the specified trace.

A data table is defined by sending a series of x-axis values. The values are assumed to be in
the current x-axis units (TRAC:HEAD:XUN). When data table calculation is turned on
(MARK:DTAB:STAT ON), the y-axis value of the trace is calculated for each x-axis value that

you sent.

The query returns a series of points. Each point consists of an x-axis value followed by the
y-axis value of the trace at that point. Use TRAC:HEAD:XUN to determine the units for the
x-axis values, Use TRAC:HEAD:YUN to determine the units for the y-axis values. Y-axis
values will all be 0 if MARK:DTAB:STAT is OFF.

7-99

Command Reference

MARK:DTAB:HEADer selector

Description:

This command only selects the MARK:DTAB:HEAD subsystem. Sending
MARK:DTAB:HEAD alone does nothing.

MARK:DTAB:HEAD:AFORmat[?] command/query

Cverlapped: no
Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ouTPUT 711;"MARK2:DTAB:HEAD:AFOR FP64"
QUTPUT 711;"Markerl:Dtable:Header:Aformat ASCii"
OUTPUT 711;"MARK:B:DTAB:HEAD:AFOR?"

Command Syntax: MARKer[<spec>]:DTABle:HEADer: AFORmat<sp> {ASCii | FP32|FP64}
<sgpec>u=":A" |:B|1|2

Query Syntax: MARKer{<spec>]:DTABle: HEADer:AFORmat?
Returned Format: {ASC|FP32|FP64}<LF><"~END>
Description:

Data tables can either be ASCIl-encoded or binary-encoded when they are transferred
between the analyzer and an external controller. This command lets you specify how a data
table should be encoded.

When ASC is selected, data is transferred as a series of values separated by commas. The
values are ASClI-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-100

Command Reference

MARK:DTAB:HEAD:POINts? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statement: ouTPUT 711;marK:B:dtab:head:poin?”

Query Syntax: MARKer[<spec>]:DTABle:HEADer:POINts?
<spec>:u=":A" [:B|1]|2

Returned Format: <value><LF><~END>

<value>::i=an integer (NR1 format)

Description:
This query tells you how many data table points will be returned from the specified Trace in

response to the MARK:DTAB:DATA query. Each point will contain both an x-axis value and
a y-axis value.

MARK:DTAB:STATe[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state:

Example Statements: ouTpuT 711;"MARK:A:DTAB:STAT OFF"
OUTPUT 711;"MARKER:B:DTABLE:STATE 1"
OUTPUT 711;"Markl:Dtab:Stat?”

Command Syntax: MARKer[<spec>]:DTABle:STATe<sp>{OFF|ON|0|1}
<spec>:=":A7 :B|1|2

Query Syntax: TRACe[<spec>]:DTABle:STATe?
Returned Format: {0|1}<LF><"END>

Description:
This command enables data table calculations for the specified trace.

A data table is defined by one or more x-axis values. When data table calculations are
enabled, the trace’s y-axis value is calculated for each of the x-axis values. This calculation
occurs each time the trace is updated.

The query returns 0 if data table calculations are disabled, 1 if they are enabled.

7-101

Command Reference

MARK:FUNCtion command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourrur 711;"mark:b:func aoff"

Command Syntax: MARKer[<spec>]:FUNCtion AOFF
<spec>u= A" |:B|1]2

Description:

This command allows you to simultaneously turn off all special markers for the specified
channel. The following are all set to 0:

* MARK:BAND:STAT
e MARK:HARM:STAT
* MARK:SID:STAT

MARBK:HARMonic[?] command/query

Description:

MARK:HARM is functionally equivalent to MARK:HARM:FREQ. See the latter command
for more details.

MARK:HARM:COUNt[?] command/query

Overlapped: no

Pelayed result: no

Pass control required: no
Power-up state: 20

Example Statements: ourpuT 711; "MARK2:BARM:COUN 10"
OUTPUT 711; "MARKER:A:HARMONIC:COUNT 120"
OUTPUT 711;"Mark:B:Harm:Coun?”

Command Syntax: MARKer[<spec>]:HARMonic:COUNt<sp> <value>
<spec>u=":A7 |:B|1|2

<value>:=any integer x, where 0 < x = 400 (NRf format)

Query Syntax: MARKer[<spec>]:HARMonic:COUN®?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

7-102

Command Reference

Description:
Use this command to specify the number of harmonic markers you want displayed.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:HARM:COUN. The nonnumeric parameters are:

¢ UP - increases the value of MARK:HARM:COUN by one
* DOWN - decreases the value of MARK:HARM:COUN by one

The query returns the number of harmonic markers currently specified for the display.
The value is returned even if harmonic markers are not enabled.

7-103

Command Reference

MARK:HARM[:FREQuency][?] command/query

Cverlapped: no

Delayed resuit: no

Pass control required: no
Power-up state: 10240

Example Statements: ourpur 711;"Markl:Harm 100"
CUTPUT 711;"marker:b:harmonic:frequency 25.7khz"
OUTPUT 711; "MARK2:HARM:FREQ?"

Command Syntax: MARKer[<spec>]:HARMonic[: FREQuency] <sp> < value>[<unit>]
<spec>:u= A~ |:B|1]|2

<value>::=any x, where 0 < x = 115 kHz for a one-channel measurement
any x, where 0 = x < 57.5 kHz for a two-channel measurement
Values must be decimal numbers in NRf format.
<unit>;="HZ~ |KHZ

Query Syntax: MAREKer{<spec>]:HARMonic[:FREQuency]?
Returned Format: <value><LF>< ~END>
Description:

This command allows you to specify the fundamental frequency for harmonic markers
and calculations.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:HARM:FREQ. The nonnumeric parameters are:

* UP - steps MARK:HARM:FREQ to the value of the next largest point on
the x-axis

* DOWN - steps MARK:HARM:FREQ to the value of the next smallest point on
the x-axis

* (MARK[:A{:B]:VAL) - sets MARK:HARM:FREQ to the frequency of the main
marker, even when the marker reference is enabled

The query returns the fundamental frequency currently being used for harmonic markers
and calculations. The value is returned in Hz. It is returned even if the harmonic markers
are not enabled.

7-104

Command Reference

MARK:HARM[:FREQ]:DIVide command

Ovetlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpuT 711;"Mark:Barm:Div 3"
OUTPUT 711;"MARK:B:HARM:FREQ:DIV 4"

Command Syntax: MARKer{<spec>]:HARMonic[:FREQuency]:DIVide<sp> <value>
<spec>n=":AT [:B|1|2

<value>:=anyx, where 1l = x < 1E+100

Description:

This command allows you to divide the current value of MARK:HARM:FREQ by a specified
amount. The result of this division becomes the new value of MARK:HARM:FREQ.

7-105

Command Reference

MARK:HARM:POWer? query

Overlapped: no

Celayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpur 711;"Mark:B:Harm:Pow?"

Query Syntax: MAREKer[<spec>]:-HARMonic:POWer?
<spec>i=":A" [:B|1|2

Returned Format: <value><LF><"~END>
<value>::=a decimal number (NRf format}

Description:

Total harmonic power can be calculated for the current fundamental frequency. This query
returns the results of the power calculation.

Total harmonic power is calculated as an rms summation of the power at all marked
harmonies. The result is converted to the current vertical unit (DISP:Y:SCAL:UNIT) after
power is calculated. In order for this query to return the result of a power calculation,
MARK:HARM:STAT and MARK:HARM:POW:STAT must be ON.

The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-106

Command Reference

MARK:HARM:POW:STATe[?] command/query

Overlapped: no

Delayed resulf: no

Pass controf required: no
Power-up state: 0

Example Statements: ourrpur 711;"MARK:A:HARM:POW:STAT ON"
ouUTPUT 711;"Marker:B:Harmonic:Power:State 0"
QUTPUT 711;"Mark2:Harm:Pow:Stat?"

Command Syntax: MARKer[<spec>]HARM:POWer:STATe<sp>{OFF|ON| 0|1}
<spec>u=":A7 [:B|1|2

Query Syntax: MARKer[<spec>]:HARM:POWer:STATe?
Returned Format: {0]1}<LF><"~END>

Description:

Use this command to enable and disable the total harmonic power calculation. When
enabled, power is calculated for the marked harmonics and the results of the calculation are
displayed on the analyzer’s screen. See MARK:HARM:POW for more information.

At any given time, only one of the two harmonic calculations can be enabled for the specified
display. If you enable the harmonic power calculation when the total harmonic distortion
calculation is already enabled, the latter is automatically disabled. (The total harmonic
distortion calculation is enabled and disabled with the MARK:HARM:THD:STAT command.}

The query returns 0 if total harmonic power calculation is disabled for the specified display,
1 if it is enabled.

7-107

Command Referance

MARK:HARM:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711; "mark2:harm:stat on"
OUTPUT 711;"MARKER:B:HBARMONIC:STATE 1"
OUTPUT 711;"MARXK:A:HARM:STAT?"

Command Syntax: MARKer[<spec>]:HARMonic:STATe<sp>{OFF |ON|0]| 1}
<spec>n= ":AT |:B|l|2

Query Syntax: MARKer[<spec>]:HARMonic:STATe?
Returned Format: {0|1}<LF><"~END>
Description:

This command enables and disables the harmonic markers. Harmonic markers must be
enabled (MARK:HARM:STAT ON) before the results of a harmonic calculation can be
returned. See MARK:HARM:POW and MARK:HARM:THD for more information.

At any given time, only one of the following markers can be active in the specified display:

* Band (MARK:BAND:STATE)
e Harmonic (MARK:HARM:STATE)
» Sideband (MARK:SID:STATE)

If you enable the harmonic markers when one of the other two is already enabled, that other
marker is automatically disabled,

The query returns 0 if the specified display’s harmonic markers are disabled, 1 if they
are enabled.

7-108

Command Reference

MARK:HARM:THD? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ouTrur 711;"MARK1:HARM:THD?"

Query Syntax: MARKer[<spec>]:HARMonic:THD?
<gpec>u=":A" |\B{1|2
Returned Format: <value>»<LF><~END>

<value>: =a decimal number (NRf format)

Description:

Total harmonic distortion can be calculated for the current fundamental frequency. This
guery returns the results of that calculation.

Total harmonic distortion (‘THD) expresses total harmonic power (THP) as a percentage of
the power in the fundamental frequency. The formula is:

THD=(THP/fundamental_power)x100

In order for this query to return the result of the THD calculation, MARK:HARM:STAT and
MARK:HARM:THD:STAT must be ON.

7-109

Command Reference

MARK:HARM:THD:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: outeuT 711;"Mark:B:Harm:Thd:Stat Off"
OUTPUT 711;"markerl:harmonic:thd:state 1"
OUTPUT 711;"MARKZ2:HARM:THD:STAT?"

Command Syntax: MARKer[<spec>]:HARMonic:THID:5TATe<sp> {OFF |ON|0| 1}
<sgpec>u=":A7 [:B|1}2

Query Syntax: MARKer[«<spec>]:ITARMonic: THD:STATe?
Returned Format: {01} <LF><"END>

Description:

Use this command to enable and disable the total harmonic distortion (THD) calculation.
When enabled, THD is calculated for the fundamental frequency and all marked harmonies.
The results of the calculation are displayed on the analyzer’s screen. See MARK:HARM:THD
for more information.

At any given time, only one of the two harmonic calculations can be enabled for the specified
display. If you enable the total harmonic distortion calculation when the harmonie power
calculation is already enabled, the latter is automatically disabled. (The harmonic power
calculation is enabled and disabled with the MARK:HARM:POW:STAT command.)

The query returns 0 if total harmonic distortion calculation is disabled for the specified
display, 1 if it is enabled.

MARK:SIDeband[?] command/query

Description:

MARK:SID is functionally equivalent to MARK:SID:FREQ. See the latter command for
more details.

7-110

Command Reference

MARK:SID:COUNt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 20

Example Statements: ourpur 711;"Mark:B:Sid:Coun 12"
OUTPUT 711;"Markerl:Sideband:Count 154"
OUTPUT 711;"mark:a:sid:coun?"”

Command Syntax: MARKer[<spec>]:3IDeband:COUNt<sp> < value>
<gpec>:u=":A"|:B|1]|2

<value>:=any integer x, where 0 < x < 200 (NRf format)

Query Syntax; MARKer[<spec>]:SIDeband:COUNt?

Returned Format: <value>»<LF><~END>

<vaglue>::=an integer (NR1 format)

Description:
Use this command to specify the number of sideband markers you want displayed.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:SID:COUN. The nonnumeric parameters are:

* UP - increases the value of MARK:SID:COUN by one
* DOWN - decreases the value of MARK:SID:COUN by one

The query returns the number of sideband markers currently specified for the display.
The value is returned even if sideband markers are not enabled.

7-111

Command Reference

MARK:SID:DELTa[?] command/query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 2048

Example Statements: ourpur 711;"MARX:B:SID:DELT 100"
OUTPUT 711;"Markerl:Sideband:Delta 1"
QUTPUT 711;"Mark:A:Sid:Delt?"

Command Syntax: MARKer[<spec>]:SIDeband:DELTa<sp > <value>[<unit>]
<gpec>u=":A" |:B|1{2
<value>:=any x, where 0 £ x < 115 kHz for a one-channel measurement
any x, where 0 < x < 57.5 kHz for a two-channel measurement

Values must be decimal numbers in NRf format.
<unit>:;="HZ~ |KHZ

Query Syntax: MARKer[<spec>]:5IDeband:DELTa?
Returned Format: <value><LF><~END>
Description:

Use this command to specify the frequency increment (or delta) between sideband markers.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:SID:DELT. The nonnumeric parameters are:

* UP - steps MARK:SID:DELT to the next largest acceptable value

* DOWN - steps MARK:SID:DELT to the next smallest acceptable value

+ (MARK[:A |:B]:VAL) - sets MARK:SID:DELT to one of two values depending on
the marker mode selected. When MARK:X:MODE is NORM, MARK:SID:DELT
is set to the value of the main marker. When MARK:X:MODE is DELT,
MARK:SID:DELT is set to the difference between the marker reference value
and the main marker value.

The query returns the frequency increment currently specified. The value is returned in Hz.
It is returned even if sideband markers are not on.

7-112

Command Reference

MARK:SID[:FREQuency}[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 51200

Example Statements: ourpur 711;"mark:sid 10khz"
OUTPUT 711;"MARKER:SIDEBAND:FREQUENCY .053KHZ"
OUTPUT 711;"MARK:A:SID?"

Command Syntax: MARKer{<spec>1:SIDeband[:FREQuencyl<sp> <value>[<unit>]
<gpec>:u=":A"|:B|1|2
<value>:=any x, where 0 < x < 115 kHz for a one-channel measurement.
any x, where 0 < x < 57.5 kHz for a two-channel measurement.

Values
<unit>:="HZ~ |KHZ

Query Syntax: MAREer[<spec>]:31Deband[:FREQuency]?
Returned Format: <value><LF>< ~END>
Description:

This command allows you to specify the carrier frequency for sideband markers
and calculations.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:SID:FREQ. The nonnumeric parameters are:

* UP - steps MARK:SID:FREQ to the value of the next largest point on the x-axis

* DOWN - steps MARK:SID:FREQ to the value of the next smallest point on
the x-axis

* (MARKI[:A|:BI:VAL) - sets MARK:SID:FREQ to the frequency of the main

marker, even when the marker reference is enabled

NOTE When you shift the carrier frequency up or down, the sideband markers are all
shifted up or down by the same amount.

The query returns the carrier frequency currently being used for sideband markers and
calculations. The value is returned in Hz. It is returned even if sideband markers are
not enabled.

7-113

Cemmand Reference

MARK:SID:POWer? query

Overlapped: no

Celayed resuit: no

Pass control required: no
Power-up state:

Example Statement: ouTpuT 711;"MARK2:SID:POW?"

Query Syntax: MARKer[<spec>]:8IDeband:POWer?
<gpec>u=":AT|:B|1l2

Returned Format: <value><LF>< ~END>
<value>::=a decimal number (NRf format)

Description:

Sideband power can be calculated for the current carrier frequency. This query returns the
resuits of the power calculation.

Sideband power is calculated as an rms summation of the power at all marked sidebands.
The result is converted to the current vertical unit (DISP:Y:SCAL:UNIT) after power is
calculated. In order for this query to return the results of a power calculation,

MARK:SID:STAT and MARK:SID:POW:STAT must be ON.
The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-114

Command Reference

MARK:SID:POW:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ouTpPuT 711;"Mark:B:Sid:Pow:Stat Off”
OUTPUT 711; "markerl:sideband:power:state 1"
OUTPUT 711;"MARR2:SID:POW:STAT?"

Command Syntax: MARKer[<spec>]:SIDeband:POWer:STATe<sp>{OFF|ON|0j1}

<spec>:=":A" |:B|1]2
Query Syntax: MARKer[<spec>]:SIDeband:POWer:STATe?
Returned Format: {0]1}<LF><"~END>

Description:

Use this command to enable and disable the sideband power calculation. When enabled,
power is calculated for the marked sidebands and the results of the calculation are displayed
on the analyzer’s screen. See MARK:SID:POW for more information.

The query returns 0 if sideband power calculation is disabled for the specified display, 1 if it
is enabled.

7-115

Command Reference

MARK:SID:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: O

Example Statements: ourpur 711;"Mark2:Sid:Stat on”
OUTPUT 711;"Marker:A:Sideband:State G"
OUTPUT 711:;"mark:b:sid:stat?”

Command Syntax: MARKer[<spec>]:SIDeband:STATe<sp> {OFF|ON|0|1}
<spec>u=":A" |:B|1|2

Query Syntax: MARKer[<spee>]:SIDeband:STATe?
Returned Format: {0|1}<LF><"~END>
Description:

This command enables and disables the sideband markers. Sideband markers must be
enabled (MARK:SID:STAT ON) before the results of the sideband power calculation can be
returned. See MARK:SID:POW for more information.

At any given time, only one of the following markers can be active in the specified display:

* Band (MARK:BAND:STATE)
+ Harmonic (MARK:HARM:STATE)
+ Sideband (MARK:SID:STATE)

If you enable the sideband markers when one of the other two is already enabled, that other
marker is automatically disabled.

The query returns 0 if the specified display’s sideband markers are disabled, 1 if they
are enabled.

7-116

Command Reference

MARK][:X][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 51200 (display A)
0.00390 (display B)

Example Statements: ourpur 711;*MARK 100"
OUTPUT 711;"Marker2:X 17KHZ"
OUTPUT 711;"Mark:A:X?"

Command Syntax: MAREer[<spec>][:X]<sp><value>[<unit>]

<gpec>u= A~ |:B[1]2
<value>::=a decimal number (NRf format)
<unit>::="HZ~ |KHZ (for frequency domain displays)
=85~ [MS|US (for time domain displays)

Query Syntax: MARKer[<spec>]1[:X]?
Returned Format: <value><LF><~END>

Description:
This command allows you to specify the position of the main marker along the x-axis.

The position is always specified relative to 0 Hz for frequency-domain displays. It is always
specified relative to 0 seconds for time-domain displays. You can not specify the position
relative to the marker reference, even when MARK:X:MODE is DELT.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X. If you use a number, it is rounded to the value of the nearest point on the x-axis.
The nonnumeric parameters are:

* UP -steps MARK:X to the value of the next largest point on the x-axis
* DOWN - steps MARK:X to the value of the next smallest point on the x-axis

The query returns the current x-axis value of the main marker if MARK:STAT is ON. The
value is returned in Hz for a frequency-domain display and seconds for a time-domain display.

The returned value is never relative to the position of the marker reference, even if
MARK:X:MODE is DELT.

7-117

Command Reference

MARK][:X]:AMAXimum command

Description:

MARK:X:AMAX is functionally equivalent to MARK:X:AMAX:GLOB. See the latter
command for more details.

MARK[:X]:AMAX:AUTO[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTrruT 711;"mark2:amax:auto off"
QUTPUT 711;"MARKER:A:X:AMAXIMUM:AUTO 1"
oUTPOT 711;"MARK:B:AMAX:AUTO?"

Command Syntax: MARKer[<spec>][:X]:AMAXimum:AUTO <sp>{0OFF|ON|0]1}
<gpec>::=" A" |[:Bil|2

Query Syntax: MARKer[<spec>][:X:AMAXimum:AUTO?
Returned Format: {0}1}<LF>< ~END>
Description:

This command enables and disables peak tracking.

When peak tracking is on, the main marker continuously moves to the highest peak on the
specified trace. Any peak at 0 Hz is ignored. Peak tracking is automatically turned off when
MARKLXLAMAX:LEFT or MARKI[:X]:AMAX:RIGH is sent to the instrument.

The query returns 0 if peak tracking is disabled for the specified trace, 1 if it is enabled.

7-118

Command Reference

MARK][:X]:AMAX][:GLOBal] command

Overlapped: no

Delayed result: no

Pass control required; no
Power-up state: not applicable

Example Statements: ocurpur 711;"MARK:X:AMAX"
OUTPUT 711;“MARKER:A:X:AMAXIMUM:GLOBAL"

Command Syntax: MARKer{<spec>][:X]:AMAXimum[:GLOBal]
<spec>:u=":AT|:B|1|2

Description:
This command moves the main marker to the highest peak on the specified trace.

This command does not allow the main marker to track the highest peak when the trace

is updated. Once the peak is found, the marker remains at the point along the x-axis where
the peak occurred. If you want the main marker to track the highest peak, use the
MARK:X:AMAX:AUTO command.

MARKI[:X]:AMAX:LEFT command

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: not applicable

Example Statements: oureur 711;"Markl:Amax:Left"
OUTPUT 711;"marker:b:x:amaximum:left"

Command Syntax: MARKer[<spec>1[:X]:AMAXimum:LEFT
<spec>:u=":A~|:B|1]2

Description:

This command moves the main marker to the next peak to the left of the current
marker position.

7-119

Command Referance

MARK[:X]:AMAX:RIGHt command

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: not applicable

Example Statements: ouTpur 711;"Mark:X:Amax:Righ®
OUTPUT 711; "Marker:A:X:Amaximum:Right”

Command Syntax: MAREKer[<spec>][: X]:AMAXimum:RIGHt
<spec>:=":A7 [:B|1]2

Description:

This command moves the main marker to the next peak to the right of the current
marker position.

MARKI[:X]:AMINimum command

Description:

MARKI:X]:AMIN is functionally equivalent to MARK:X:AMIN:GLOB. See the latter
command for more details.

MARKI[:X]:AMIN[:GLOBal] command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpuT 711;*MARKI:X:AMIN:GLOB"
ouTPUT 711;"Marker:B:X:Aminimum:Global"

Command Syntax: MARKer[<spec>]{X]:AMINimum{:GLOBal]
<gpec>i=":A7|:B{1]2

Description:
This command moves the main marker to the lowest point on the specified trace.

7-120

Commangd Refarence

MARK[:X]:AMPLitude? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: variable

Example Statement: outpPuT 711;"mark2:ampl?”

Query Syntax: MARKer[<spec>][:X]:AMPLitude?
<spec>:=":A7 |:B|1|2

Returned Format: <value><LF><~END>

<value>::=a decimal number (NRf format)

Description:
This query returns one of two values, depending on the setting of MARK:X:MODE.

When MARK:X:MODE is NORM and MARK:X:STAT in ON, the query returns the main
marker’s is current amplitude. When MARK:X:MODE is DELT and MARK:X:STAT is ON,
the query returns the difference between the amplitude of the marker reference and the
amplitude of the main marker. Values are returned in the current display unit.

7-121

Command Reference

MARK[:X]:AUTO[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTpPuT 711;"MARK:B:X:AUTO 0"
QUTPUT 711;“MARKER1:X:AUTO ON"
QUTPUT 711;"Mark:A:X:Auto?"

Command Syntax: MAREKer[<spec>][:XLAUTO <sp>{OFF |ON |01}
<spec>u=":A7 |:B|1{2

Query Syntax: MARKer{<spec>][:X]:AUTO?
Returned Format: {0|1}<LF><"~END>

Description:
Use this command to enable and disable marker coupling.

Marker coupling links the main markers of display A and display B. When you send a
command that moves the main marker of one display, the main marker of the other
also moves.

Marker coupling is especially useful when you are displaying the same measurement data
using two different trace types. For example, if you were displaying frequency response data
using the magnitude and phase trace types, you could track the magnitude and phase of the
data at each frequency.

Marker movements are linked via x-axis point number, not by the relative position from the
left side of the displays. As a result, linked markers may not always line up on the analyzer’s
screen, For example, you could display the same measurement data using the same trace type
on both displays. But if x-axis points are spaced linearly on display A and logarithmically on
display B, the markers will only be aligned on the screen when they are at the first and last
X-axis points.

When marker coupling is enabled, the position, of the inactive trace’s main marker always
corresponds to the position on the active traces main marker. This is true even when peak
tracking is enabled (MARK:X:AMAX:AUTO ON) for the inactive trace.

The query returns 0 if marker coupling is disabled, 1 if it is enabled.

7-122

Command Reference

MARK]:X]:DELT[?] command/query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: 52100 (display A)
O (display B)

Example Statements: ouTpuT 711;"Mark:A:Delt 100"
OUTPUT 711;"marker:b:x:delta 87khz"
OUTPUT 711;"MARK1:X:DELT?"

Command Syntax: MARKer{<spec>][:X}:DELTa<sp> <value>[<unit>]
<gpec>u=":A" |:B|1{2
<value>::=a decimal number (NRF format)
<unit>="HZ ™~ |KHZ (for frequency domain displays)
~ S~ |MS|US {for time domain displays)

Query Syntax: MARKer[<spec>][:X]:DELTa?

Returned Format: <value><LF><~END>

<value>:: =g decimal number (NRf format)

Description:

A marker referenee can be defined by specifying an x-axis and y-axis value. This command
allows you to specify the x-axis value of the marker reference. When MARK:X:MODE is
DELT, the value returned by MARK:AMPL.? is difference between the amplitude of the
marker reference and the amplitude of the main marker.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:DELT. The nonnumeric parameters are:

* UP - steps MARK:X:DELT to the value of the next largest point on the x-axis

* DOWN - steps MARK:X:DELT to the value of the next smallest point on
the x-axis

+ (MARK[:A|:B]:VAL) - sets MARK:X:DELT to the x-axis value of the main
marker, even when the marker reference is enabled

To enable the marker reference, MARK:X:STAT must be ON and MARK:X:MODE must
be DELT.

The MARK:X:DELT this query returns the current x-axis value of the marker reference.

The value is returned in Hz for a frequency-domain display and in seconds for a
time-domain display;

7-123

Command Reference

MARKI:X]:DELT:AMPLitude[?] command/query

Overlapped: no

Delayed resuit: no

Pass control required: no
Power-up state: -40 (display A)
0 (display B)

Example Statements: ouTpuT 711;"Markl:Delt:Ampl 20"
QUTPUT 711;"Marker:X:Delta:Amplitude .57
OUTPUT 711;"mark2:x:delt:ampl?”

Command Syntax: MARKer[<spec>][:X]:DELTa:AMPLitude<sp> <value>
<gpec>nu="":A" |:B}]1|2

<value>:=a decimal number (NRf format)

Query Syntax: MARKer{ <spec>][:X]:DELTa:AMPLitude?
Returned Format: <value><LF>< ~END>
Description:

A marker reference can be defined by specifying an x-axis and y-axis value. This command
allows you to specify the y-axis value of the marker reference. When MARK:X:MODE is
DELT, the value returned by MARK:X:AMPL? is the difference between the amplitude of the
marker reference and the amplitude of the main marker.

You can not specify units for the y-axis value. They are assumed to be the same as the
current display units. These can be determined with the DISP:Y:SCAL:UNIT query.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:DELT:AMPL. The nonnumeric parameters are:

* UP - increases the value of MARK:X:DELT:AMPL by half the increment
between vertical grid lines

* DOWN - decreases the value of MARK:X:DELT:AMPL by half the increment
between vertical grid lines

* (MARK[:A|:B]:VAL) — sets MARK:X:DELT:AMPL to the y-axis value of the main
marker, even when the marker reference is enabled

To enable the marker reference, MARK:X:STAT must be ON and MARK:X:MODE must
be DELT.

The MARK:X:DELT query returns the current amplitude of the marker reference. The units
for this value are returned with the DISP:Y:SCAL:UNIT query.

7-124

Command Reference

MARK][:X]:DELT:POINt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 200 (display A)
0 (display B)

Example Statements: ocurpur 711;"MARK:A:X:DELT:POIN 10"
OUTPUT 711;"Marker2:X:Delta:Point 256"
OUTPUT 711;"Mark:B:X:Delt:Poinz"

Command Syntax: MARKer[<spec>][:X]:DELTa:POINt<sp> <value>

<sgpec>u=":A" |:B|1[2
<value>:=any integer x, where 0 < x =< 400 (for a frequency-domain display)
any integer x, where 0 < x < 1023 (for a time-domain display)
Send all values in the NRf format.

Query Syntax: MARKer{<spec>][:X]:DELTa: POINt?

Returned Format: <value><LF>< ~END>
<value>::=an integer (NR1 format)

Description:

The x-axis is divided into discrete points: 401 points for frequency-domain displays, and 512
or 1024 points for time-domain displays. This command lets you define the x-axis position of
the marker reference as a point number rather than a frequency or time,

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X:DELT:POIN. The nonnumeric parameters are:

* UP - increases the value of MARK:X:DELT:POIN by one
* DOWN - decreases the value of MARK:X:DELT:POIN by one

The query returns the marker reference’s x-axis position as a point number.

7-125

Command Reference

MARK[:X]:DELT:ZERO command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;“MARK:DELT:ZERO"
OUTPUT 711;"Markerl:X:Delta:Zero”

Command Syntax: MARKer[<spec>]1[:X}:DELTa:ZERO

<spec>:u=":A"|:B|1{2

Description:
This command sets the marker reference to the current position of the main marker.

MARK][:X]:MODE[?] command/query

Overlapped: no

Delayed result: no

Pass controt required: no
Power-up state: NORM

Example Statements: outpuT 711;"mark:b:mode norm"
CUTPUT 711;"MARKER1:X:MODE DELTA"™
OQUTPUT 711;"MARK:B:X:MODE?"

Command Syntax: MARKer{<spec>][:X]:MODE<sp>{DELTa | NORMal}
<gpec>n=":A"7|:B|1|2

Query Syntax: MARKer[<spec>][:X]:MODE?
Returned Format: {DELT|NORM}<LF>< ~END>
Description:

This command enables and disables the marker reference for the specified display.

When the marker reference is enabled, the main marker’s amplitude (returned by
MARK:X:AMPL?) is expressed as an amount of offset from the marker reference position.
However, the main marker’s x-axis position (returned by MARK:X?) is never expressed as an
offset from the marker reference, regardless of the setting of MARK:X:MODE.

Use one of the following to define the marker reference position,
+ MARK:X:DELT:ZERO

» MARK:X:DELT:AMPL in combination with either MARK:X;:DELT or
MARK:X:DELT:POIN

The query returns DELT when the marker reference is enabled, NORM when it is disabled.

7-126

Command Reference

MARK]:X]:POINt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 200 (display A)
512 (display B)

Example Statementis: ourpur 711;"MARK:X:POIN 128"
OUTPUT 711;"MARKER:A:X:POINT 512"
OUTPUT 711;"Mark2:X:Peoin?”

Command Syntax: MARKer[<spec>][:X]:POINt<sp> <value>

<spec>u=":AT [:B]1|2
<value>::=any integer x, where 0 < x =< 400 (for a frequency-domain display)
any integer x, where 0 < x < 1023 (for a time-domain display)
Send all values in the NRf format.

Query Syntax: MARKer]<spec>][:X]:POINt?

Returned Format: <value><LF>< ~END>

<value>:=an integer (NR1 format)

Description:

The x-axis is divided into discrete points: 401 points for frequency-domain displays, and 512
or 1024 points for time-domain displays. This command lets you define the x-axis position of
the main marker as a point number rather than a frequency or time.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X:POIN. The nonnumeric parameters are:

s UP - increases the value of MARK:X:POIN by one
¢+ DOWN - decreases the value of MARK:X:POIN by one

If MARK:STAT is ON, this query returns the main marker’s current x-axis position as a
point number.

MARK]I:X]:SEARch selector

Description:

This command only selects the MARK:X:SEAR subsystem. Sending MARK:X:SEAR alone
does nothing.

7127

Command Reference

MARK][:X]:SEAR:AMPLitude[?] command/query

Overlapped: no

Delayed resuit: no

Pass control required: no
Power-up state: -3.01 (display A)
1 (display B)

Example Statements: ouTpur 711;"Mark:B:X:Sear:Ampl 1V"
OUTPUT 711;"markerl:x:search:amplitude 7.2deg”
OUTPUT 711;"MARK:A:X:SEAR:AMPL?"

Command Syntax: MARKer[<spee>][:X]:SEARch:AMPLitude<sp> <value>[<unit>]

<spec>:= A~ |:B|1|2
<value>::=a decimal number (NRf format)
<unit>::=any vertical units that are valid for the current display

Query Syntax: MAREKer[<zpec>]{:X]:SEARch:AMPLitude?
Returned Format: <value><LF>< ~END>

Description:

The analyzer can search for points along the specified trace that intersect a particular y-axis
value. Use this command to specify the target value for such a search.

When MARK:X:MODE is NORM, the value you send with this command specifies the target
value for the search directly. The search is conducted for points on the trace that intersect
the specified y-axis value.

When MARK:X:MODE is DELT, the value you send with this command specifies the target
value for the search only indirectly. The value you send with this command is added to the
y-axis value of the marker reference to calculate the actual target value. The search is
conducted for points on the trace that intersect the calculated y-axis value. This allows you
to search for y-axis values that are relative to the marker reference.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:SEAR:AMPL. The nonnumeric parameters are:

* UP - increases the value of MARK:X:SEAR:AMPL by half the increment
between y-axis grid lines

¢ DOWN - decreases the value of MARK:X:SEAR:AMPL by half the increment
between y-axis grid lines

* (MARK[:A|:B]:VAL) - sets MARK:X:SEAR:AMPL to one of two values
depending on the marker mode selected. When MARK:X:MODE is NORM,
MARK:X:SEAR:AMPL is set to the y-axis value of the main marker. When
MARK:X:MODE is DELT, MARK:X:SEAR:AMPL is set to the difference between
the marker reference value and the main marker value.

7-128

Command Reference

Once a target value has been specified, use MARK:X:SEAR:RIGH and MARK:X:SEAR:LEFT
to conduct the search.

The query returns the current value of MARK:X:SEAR:AMPL. Units for the value can be
returned with the DISP:SCAL:UNIT query.

MARK[:X]:SEAR:LEFT command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"Markl:X:Sear:Left"
OUTPUT 711;"Marker:B:X:Search:Left”

Command Syntax: MARKer[<spec>][:X]:SEARch:LEFT
<spec>:= ":A7|:B|1|2

Description:

This command moves the main marker left from its present position to the first occurrence
of the y-axis target value. If the target value is not found, the marker is not moved. The
target value is specified with the MARK:X:SEAR:AMPL command.

7-129

- Command Reference

MARK][:X]:SEAR:RIGHt

command

Overlapped: no
Delayed result: no
Pass control required: no

Power-up state: not applicable

Example Statements: ourpur 711;"MARK1:X:SEAR:RIGH"
OUTPUT 711;"Marker:B:X:Search:Right™

Command Syntax: MARKer[<spec>][:X1:SEARch:RIGHt
<spec>u=":A7{:B|1}2

Description:

This command moves the marker right from its present position to the first occurrence of the
y-axis target value. If the target value is not found, the marker is not moved. The target

value is specified with the MARK:X:SEAR:AMPL command.

MARK[:X]:STATe[?]

command/query

Example Statements: ouTpPuT 711;"mark2:stat off"
OUTPUT 711;"MARKER:A:X:STATE 1"
OUTPUT 711;"MARK:B:X:STAT?"

Command Syntax: MARKer[<spec>][:X]:3TATe<sp>{OFF|ON|0]|1}
<gpec>u=":A" |:B|1|2

Query Syntax: MARKer[<spec>1[:X]:STATe?
Returned Format: {0|1}<LF><"~END>

Description:

QOverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

This command enables and disables the main marker for the specified display.

The query returns 0 if the specified display’s main marker is off, 1 if it is on.

7-130

Mmemory —
Screen

Command Reference

MMEMory subsystem

Description:

Commands in this subsystem are used to access the analyzer’s mass storage functions
{including such things as saving, recalling, and copying files). Many of the commands
require a mass storage specifier. The options are:

* RAM: — This specifies a RAM disc that uses some of the analyzer’s memory.
e« INT: — This specifies the analyzer’s internal disc drive.

* EXT: - This specifies an external disc drive connected to the analyzer via the
HP-IB. The drive must use the SS/80/HP-IB protocol.

In most cases, if you do not send a mass storage specifier with a command that
requires one, a default specifier is assumed. The default specifier is selected with the

MMEM:MSI command.

7-131

Command Referenca

MMEM:COPY command

Overlapped: yes

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

NOTE Do not use this command to copy all files at once if the destination device contains
files you want to keep. All files on the destination device are overwritten when you

specify an all-file copy.

Example Statements: ourpor 711;"MMEM:COPY *RAM:”,'INT:’"
OUTPUT 711;"MMEMORY:COPY ""RAM:MyPile"",""EXT:MyExtFile"""

Command Syntax: MMEMory:COPY<sp>{'|"} <gource>{"{"},{’|"} <destination>
{1
<source>::=EXT:{INT:|RAM: (when copying the entire contents of one mass storage
device to another)

[EXT:|INT:|RAM:]<filename> (when copying a single file)
<source> designates the mass storage device or file that will be copied.

<destination>:=EXT:|INT: | RAM: (when copying the entire contents of one mass storage
device to another)

[EXT:|INT:|RAM:] <filename> (when copying a single file)

<destination> designates the mass storage device or file that will receive
the new copy

<filename>::=1 to 10 printable ASCII characters

Description:

Use this command to copy files. You can copy files one at a time or you can copy all of the
files on one mass storage device to another device.

To copy one file, the name of the file you want to copy should be entered as the <source>.
The name for the new file should be entered as the <destination>. You must precede the
source filename with a mass storage specifier unless the file resides on the default mass
storage device. You must precede the destination filename with a mass storage specifier
unless you want the new copy to be placed on the default mass storage device. (Use the
MMEM:MSI query to determine the default device.)

To copy all files on one mass storage device to another device, the device containing the files
should be entered as the <source>. The device that will receive the new copies should be
entered as the <destination>.

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-1B must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-132

Command Reference

MMEM:DELete command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpur 711;"Mmem:Del ‘RAM:’"
OUTPUT 711;"mmemory:delete ‘INT:myspec’”

Command Syntax: MMEMory:DELete<sp>{’|"} <target>{’["}

<target>::=EXT:|INT:|RAM: (when deleting everything from a mass storage device)

[EXT:|INT:|RAM:] <filename> (when deleting one file from a mass
storage device)

<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to delete either one file or all files from a mass storage device.

To delete just one file, enter the filename as the <target>. You must precede the filename
with a mass storage specifier unless the file resides on the default mass storage device.
(Use the MMEM:MSI query to determine the default device.)

To delete all files from a mass storage device, enter the device specifier as the <target>.

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-1B must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavicr in an HP-1B System.”

7-133

Command Reference

MMEM:FORM[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: BIN

Example Statements: ourpur 711:"Mmem:Form Bin"
OUTPUT 711; "Mmemory:Form Ascii”
OUTPUT 711;"mmem:form?”

Command Syntax: MMEMory:FORM <sp> {ASCii| BINary}

Query Syntax: MMEMory:FORM?
Returned Format: {ASC|BIN}«<LF><~END>
Description:

This command selects the type of data encoding that will be used when files are saved. The
two types of encoding are ASCII and binary.

The option you select here is only needed when a file is saved using the analyzer’s
front-panel keys. This is because a data encoding type is already implied in the HP-IB
commands used to save files. For example, to save a trace into a binary-encoded file, use the
HP-IB command:

MMEM:STOR:TRAC ’trace_1’

To save the same trace into an ASCII-encoded file, use the HP-IB command:
MMEM:SAVE:TRAC ’trace 1’

The query returns ASC or BIN depending on the option last selected.

7-134

Command Reference

MMEM:GET selector

Description:

This command only selects the MMEM:GET subsystem. Sending MMEM:GET alone
does nothing.

Commands in the MMEM:GET subsystem are used to load either trace or setup information
into the analyzer from files on a mass storage device. All of the commands allow you to
specify the device on which files reside. If you do not specify a device, however, the default
device is assumed. (Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

There is no difference between comparable commands in the two subsystems MMEM:GET
and MMEM:LOAD subsystems, Whether the file is stored as ASCII or binary, a GET or
LOAD will read it in.

MMEM:GET:DTABIle command

Overlapped: yes only for EXT:

Delayed result; no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTepuT 711;“MMEM:GET:DTAB]1 ' INT:MYTABLE'"
OUTPUT 711;"Mmemory:Get:Dtable:B ""EXT:myTable"""

Command Syntax: MMEMory:GET:DTABle[<spec>]<sp>{’|"}H <msi>]<filename>{’|"}

<spec>u=":A" |.B|1{2
<msi>:=EXT:| INT: RAM:

<filename>::=name of the file you want to load (the file must contain a data table)

Description:

Use this command to recall a data table from a file. The data table will be coupled to the
display specified in <spec>.

See MMEM:GET for more information.

7-135

Command Reference

MMEM:GET:LIMit command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourrur 711;"mmem:get:lim3 “"RAM:mylimit“""
QUTPUT 711;"MMEMORY:GET:LIMIT5 ‘INT:YOQURLIMIT'"

Command Syntax: MMEMory:GET:LIMit<spec> <sp>{’|"}{<msi>]<filename>{*|"}
<spec>::=a single integer from 1 to 8
<msi>;:=EXT:|INT: [RAM:

«<filename>:;=name of the file you want to load (the file must contain a limit table)

Description:

Use this command to recall a limit table from a file. Because the analyzer has places for
eight limit tables, you must use <spec> to indicate which table should receive the file.

See MMEM:GET for more information.

MMEM:GET:-MATH command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTeuT 711;"MMEM:GET:MATH ‘EXT:MYMATH'"
OUTPUT 711;"MMEMORY:GET:MATH ‘INT:Definition’"

Command Syntax: MMEMory:GET:MATH<sp>{’|"} [<msi>]<filename>{"|"}
<msi>:;=EXT:|INT:|RAM:

<filename>::=name of the file you want to load (the file must contain math definitions)

Description:
Use this command to recall math definitions from a file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once. You can not save or recall individual functions or constants.

See MMEM:GET for more information.

7-136

Command Reference

MMEM:GET:STATe command

Overlapped: yes only for EXT:

Celayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTpuT 711;"Mmem:Get:Stat ""RAM:MYSTATE"""
OUTPUT 711; "mmemory:get:state ""EXT:MyFile"""

Command Syntax;: MMEMory:GET:STATe<sp>{'|"} <msi>]<filename>{’|"}
<msi>:=EXT:|INT: |RAM:

<filename>::=name of the file you want to load (the file must contain an instrument state)

Description:
Use this command to recall an instrument state (setup) from a file.

NOTE in addition to setup information, instrument-state files include definitions for the
following items: all eight limit tables, both data tables, and all five math functions
and constants. As a result, the current definitions of these items are all overwritten
when you recall an instrument state.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
you can save time by recalling an instrument state rather than sending many

individual commands.

See MMEM:GET for more information.

7-137

Command Reference

MMEM:GET:TRACe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ocuTruT 711;"Mmem:Get:Trac ‘INT:tracetype’"”
CUTPUT 711;"Mmemory:Get:Tracel ""EAT:MYTRACE"""

Command Syntax: MMEMory:GET:TRACe[<spec>]<sp>{’|"}H <msi>]<filename> {*|"}
<spec>u=":A7|:B|1]2
<msi>;=EXT:|INT: [RAM:
<filename>::=name of the file you want to load (the file must contain a trace)

Description:

Use this command to recall a trace from a file. The trace will be placed into the display
specified in <spec>.

See MMEM:GET for more information.

MMEM:INITialize command

Overlapped: yes

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpuT 711;“MMEM:INIT ‘INT:MY DIR'"
QUTPUT 711;"Mmemoxry:Initialize ‘RAM:’"

Command Syntax: MMEMory:INITialize<sp>{’|"} <msi>[<volume name>]{’|"}
<mst>;=EXT:|INT: |[RAM:

<volume_name>: =1 to 10 printable ASCII characters

Description:

Use this command to format the specified mass storage device. Formatting proceeds
according to selections last made with the MMEM:INIT:INT and
MMEM:INIT:OPT commands.

When you format a device, you can give it a volume name. This is especially useful for
identifying the floppy discs you use in the analyzer’s internal disc drive. The name is
displayed on the analyzer’s screen when the catalog is turned on (SCR:CONT DCAT).

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back.

For more information on passing control, see Chapter 2, “Behavior in an IIP-IB System.”

7-138

Command Reference

MMEM:INIT:INTerleave[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourruT 711;"mmem:init:int 1"
OUTPUT 711; "MMEMORY:INITIALIZE:INTERLEAVE 5"
OUTPUT 711;“MMEM:INIT:INT?"

Command Syntax: MMEMory:INITialize:INTerleave <sp> <factor >

<factor>:=an integer from 1 through 255 (NRf format)

Query Syntax: MMEMory:INITialize:INTerleave?

Returned Format: <factor><LF>< ~END>

<factor>::=an integer (NR1 format)

Description:

This command lets you specify an interleave factor to be used when analyzer formats a mass
storage device.

During formatting, each track on a dise is divided into sectors, and the sectors are numbered
in a pattern determined by the interleave factor. The numbering pattern has an effect on the
efficiency of disc-read and disc-write operations.

For the analyzer’s internal disc drive, an interleave factor of 1 results in the most efficient
disc operations. If you use an external disc drive, you will need to check the drive’s
documentation to determine which interleave factor will work best.

You can either use numbers or one of two nonnumeric parameter to set the value of
MMEM:INIT:INT. The nonnumeric parameters are:

* UP — increases the current value of MMEM:INIT:INT by one
* DOWN ~ decreases the current value of MMEM:INIT:INT by one

The query tells you which disc interleave factor is currently selected.

7-139

Command Reference

MMEM:INIT.OPTion[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: oureur 711; "MMEM:INIT:OPT 64"
OUTPUT 711 ;“MMEMory:INITialize:0PTion 256"
QUTPUT 711;"MMEM:INIT:0PT?"

Command Syntax: MMEMory:INITialize:OPTion<sp> <value>
<value>::=an integer from 0 through 16777216 (NRf format)

Query Syntax: MMEMory:INITialize:OP Tion?

Returned Format: <value><LF>«< ~END>

<value>::=an integer (NR1 format)

Description:

This command lets you specify the format option to be used when the analyzer formats a
mass storage device.

The format option is an encoded value whose meaning is dependent on the mass storage
device being formatted. If you are formatting an external disc drive, you must refer to its
documentation to decode the different format option values.

Format options 0 through 5 are used to allocate memory for the analyzer’s RAM disc (RAM:).
They are also used to allocate dise space on the analyzer’s internal disc drive. The amount of
memory or disc space (in bytes) for these options are as follows:

RAM Internal
Option Disc Disc
4] B4k 640k
1 640k 640k
2 710k 710k
3 788k 788k
4 270k - —
5 640k B4k

When formatting the RAM disc, you can also use the MMEM:INIT:OPT command to directly
specify the amount of memory you want allocated for the RAM disc. In this case, <value> is
not encoded. It should contain the amount of memory you want allocated (in bytes). The
amount you specify is rounded up to the nearest multiple of 256 bytes. You can determine
how much memory is available for the RAM disc by sending SCR:CONT MEM and
examining the information displayed on the analyzer’s screen.

The query response tells you which option is currently selected.

7-140

Command Reference

MMEM:LOAD selector

Description:
This command only selects the MMEM:LOAD subsystem. Sending MMEM:LOAD alone
does nothing.

Commands in the MMEM:LOAD subsystem are used to load either trace or setup
information into the analyzer from files on a mass storage device. All of the commands allow
you to specify the device on which files reside. If you do not specify a device, however, the
default device is assumed. (Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT"),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, ‘“‘Behavior in an HP-IB System.”

There is no difference between comparable commands in the MMEM:LOAD and
MMEM:GET subsystems.

7-141

Command Reference

MMEM:LOAD:APPLication command

Cverlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpuT 711;"MMEM:LOAD:APPL ""INT:myappll®""
OUTPUT 711; "MMEMORY :LOAD:APPLICATION ‘EXT:MyAppl2‘'"

Command Syntax: MMEMory:LOAD:APPLication <sp> {*|"}H <msi>] <filename> {*|"}
<msi>n=EXT:|[INT: | RAM:

<filename>::=name of the file you want to load (the file must contain an application
program written for the HP 35660A)

Description:
Use this command to install an application from a file.

NOTE Applications that run on the HP 35660A may add some HP-IB commands that
are not described in this manual. See the application's documentation for
more information.

See MMEM:LOAD for more information.

MMEM:LOAD:APPL:ALL command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpur 711;"Mmem:Load:Appl:All “"INT:"""
OUTPUT 711;"MMEMORY:LOAD:APPLICATION:ALL 'EXT:‘"

Command Syntax: ~ MMEMory:LOAD:APPLication:ALL<sp> {’|"}H{EXT: | INT: |RAM:} {"|"}

Description:
Use this command to install all applications that reside on the specified mass storage device.

NOTE Applications that run on the HP 35660A may add some HP-IB commands that are
not described in this manual. See the application's documentation for
more information.

See MMEM:LOAD for more information,

7-142

Command Reference

MMEM:LOAD:APPL:AUTO[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ocutpur 711;"MMEM:LOAD:APPL:AUTO ON"
QUTPUT 711; "Mmemcry:Load:Application:Auto 0"
OuUTPUT 711;"mmem:lcad:appl:auto?”

Command Syntax: MMEMory:LOAD:APPLication:AUTO<sp>{OFF|ON| 0|1}
Query Syntax: MMEMory:LOAD:APPLication: AUTO?
Returned Format: {0|1}<L¥><"~END>

Description:

This command allows you to specify whether or not applications should be loaded
automatically when you turn the analyzer on.

If MMEM:LOAD:APPL:AUTO is ON, any application whose name ends with “ LD” is
automatically loaded into the analyzer at power-up. First, the analyzer loads all such
applications from the internal disc drive. Then, if the analyzer is the system controller and
an external disc drive is connected to the HP-IB, the analyzer loads all such applications from
the external drive.

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the state of MMEM:LOAD:APPL:AUTO does not change.

7-143

Command Reference

MMEM:LOAD:DTABIe command

Overlapped: yes only for EXT:

Delayed resuit: no

Pass control required: yes only for EXT.
Power-up state: not applicable

Example Statements: ouTpuT 711;“Mmem:Load:Dtab2 ""RAM:MYTABLE4"""
QUTPUT 711; "mmemory:load:dtable:a ’'EXT:dataTable’"

Command Syntax: MMEMory:LOAD:DTABIle[<spec>]<sp>{’|"}H <msi>] <filename>{"|"}
<spec>u=":A7|:B|1]2
<msi>=EXT:[INT: [RAM:

<filename>::=name of the file you want to load (the file must contain a data table)

Description:
Use this command to recall a data table from a file. The data table will be coupled to the
display specified in <spec>.

See MMEM:LOAD for more information.

MMEM:LOAD:LIMit command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: oureur 711;"Mmem:Load:Liml *INT:MYLIMIT’"
OUTPUT 711;"Mmemory:load:Limit7 ""EXT:extlimit™""

Command Syntax: MMEMory:LOAD:LIMit<spec> <sp>{’|"}[<msi>]<filename>{* |"}

<sgpec>::=asingle integer from 1 to 8
<msi>:;:=EXT:[INT: | RAM:

<filename>::=name of the file you want to load (the file must contain a limit table)

Description:

Use this command to recall a limit table from a file. Because the analyzer has places for
eight limit tables, you must use <spec> to indicate which table should receive the file.

See MMEM:LOAD for more information.

7-144

Command Reference

MMEM:LOAD:MATH command

Qverlapped: yes only for EXT:

Delayed result: no

Pass control required; yes only for EXT:
Power-up state: not applicable

Example Statements: ouTpuT 711;"MMEM:LOAD:MATH ’RAM:myMath’”
OUTPUT 711;"Mmemory:Load:Math ‘INT:mathdef’"

Command Syntax: MMEMory:LOAD:MATH<sp>{’|"}[<msi>]<filename> {*|"}
<msi>n=EXT:|INT: |RAM:

<filename>::=name of the file you want to load (the file must contain math definitions)

Description:
Use this command to recall math definitions from a file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once. You can not save or recall individual functions or constants.

See MMEM:LOAD for more information.

7-145

Command Reference

MMEM:LOAD:STATe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT.
Power-up state; not applicable

Example Statements: ouTpuT 711;"mmem:load:stat ""RAM:MyState"*"
OUTPUT 711; "MMEMORY:LOAD:STATE ""EXT: INST STATE wn

Command Syntax: MMEMory:LOAD:STATe <sp> {’|"}[<msi>] < filename>{*|"}
<msi>=EXT:|INT: | RAM:

<filename>::=name of the file you want to load (the file must contain an instrument state)

Description:
Use this command to recall an instrument state (setup) from a file.

NOTE In addition to setup information, instrument-state files include definitions for the
following items: all eight limit tables, both data tables, and all five math functions
and constants. As a result, the current definitions of these items are all overwritten
when you recall an instrument state.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
you can save time by recalling an instrument state rather than sending many

individual commands.

See MMEM:LOAD for more information.

7-146

Command Reference

MMEM:LOAD:TRACe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpur 711;"MMEM:LOAD:TRAC ""INT:A TRACE"""
OUTPUT 711;"MMEMORY:LOAD:TRACE ‘RAM:mytrace’"”

Command Syntax: MMEMory:LOAD:TRACe[<spec>] <sp>{’|"}[<msi>]<filename> {*|"}

<spec>:u=":A" |:Bj1|2
<msi>:=EXT:[INT: | RAM:
<filename> ::=name of the file you want to load (the file must contain a trace)

Description:

Use this command to recall a trace from a file. The trace will be called into the display
specified in <spec>.

See MMEM:LOAD for more information.

7-147

Gommand Reference

MMEM:MSI[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ouTpur 711;"Mmem:Msi ‘RAM:’"
OUTPUT 711;"mmemory:msi ""INT:"""
OUTPUT 711; "MMEM:MSI?"

Command Syntax: MMEMory:MST<sp> {’|"}{EXT:{INT: [RAM:}{’|"}

Query Syntax: MMEMory:MSI?
Returned Format: "(EXT:|INT:|[RAM:}"<LF><~END>
Description:

This command allows you to indicate which of the three mass storage devices will be the
default device.

Many commands in the MMEMory subsystem allow you to either include or omit a mass
storage specifier. When you omit the specifier, the default device is used.

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the state of MMEM:MSI does not. change.

The query tells you which mass storage device is currently specified as the default.

7-148

MMEM:MSL:ADDRess[?]

Command Reference

command/query

Overlapped: no
Delayed resuit: no
Pass control regquired: no

Power-up state: saved in nonvolatile memory

Example Statements: ourpur 711;"Mmem:Msi:Addr 17
OUTPUT 711; "Mmemory:Msi:Address 6"
OQUTPUT 711;"mmem:msisaddr?”

Command Syntax: MMEMory:MSI:ADDRess<sp> <value>

<value>:=any integer x, where 0 < x = 7 (NRf format)

Query Syntax: MMEMory:MSI:ADDRess?

Returned Format: <value><LF>< ~END>

<value>::=an integer (NR1 format)

Description:

Use this command to enter the address of an external disc drive (EXT:) eonnected to the
analyzer’s HP-IB. What you enter here must match the address setting of the drive’s
HP-IB address switches. (Refer to the disc drive’s documentation for the location of its

address switches.)

You can either use numbers or one of two nonnumeric parameters to set the value of

MMEM:MSI:ADDR. The nonnumeric parameters are:

* UP - increases the current value of MMEM:MSLI:ADDR by one
* DOWN - decreases the current value of MMEM:MSI:ADDR by one

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back

on, the state of MMEM:MSI:ADDR does not change.

The query returns the HP-IB address at which the analyzer expects to find the external

dise drive.

7-149

Command Reference

MMEM:MSI:UNIT[?]

command/query

Overlapped: no
Delayed result: no
Pass control required: no

Power-up state; saved in nonvolatile memory

Example Statements: ourpur 711;"MMEM:MSI:UNIT 1"
OUTPUT 711; "Mmemory:Msi:Unit 77
OUTPUT 711;"Mmem:Msi:Unit?"

Command Syntax: MMEMory:MSI:UNIT <sp><value>

<value>::=any integer x, where 0 < x = 15 (NRf format)

Query Syntax: MMEMory:MSI[:UNIT?

Returned Format: <value><F>< ~END>

<value>::=an integer (NR] format)

Description:

This command allows you to indicate which unit of the external disc drive (EXT:) should be

used for mass storage.

If the external drive has one HP-IB port for more than one mass storage unit, each unit is
specified by a different number. For disc drives with only one mass storage unit, the unit
number is 0 (zero). See the disc drive’s documentation for more information on determining

the unit number.

You can either use numbers or one of two nonnumeric parameters to set the value of

MMEM:MSL:UNIT. The nonnumeric parameters are:

* UP — increases the current value of MMEM:MSI:UNIT by one
* DOWN — decreases the current value of MMEM:MSI:UNIT by one

The unit number last specified with this command is saved in nonvolatile memory when you
send the SYST:SAVE command. This means that when you turn the analyzer off and then

back on, the number does not change.

The query returns the unit number currently specified for the external disc drive.

7-150

Command Reference

MMEM:MSI:VOLume[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatite memaory

Example Statements: outpuT 711; "mmem:msi:vel 27
OUTPUT 711;"MMEMORY :MST:VOLUME 5"
OUTPUT 711;"MMEM:MSI:VOL?"

Command Syntax: MMEMory:MSL:VOLume<sp> <value>

<value>:=any integer x, where 0 < x < 7 (NRf format)

Query Syntax: MMEMory:MSI:VOLume?

Returned Format: <value><LF>< ~END>

<value>:=integer in NR1 format.

Description:

This command allows you to specify which volume of the external disc drive (EXT:) should be
used for mass storage.

If the external drive contains multiple volumes, each is specified by a different number. If
the drive contains only one volume, the volume number is 0 (zero). See the disc drive’s
decumentation for more information on determining the volume number.

You can either use numbers or one of two nonnumeric parameters to set the value of
MMEM:MSI:VOL. The nonnumeric parameters are:

* UP — increases the current value of MMEM:MSI:VOL by one
* DOWN — decreases the current value of MMEM:MSI:VOL by one

The volume number last specified with this command is saved in nonvolatile memory when
you send the SYST:SAVE command. This means that when you turn the analyzer off and
then back on, the number does not change.

The query returns the volume number currently specified for the external disc drive.

7-151

Command Reference

MMEM:PACK command

Overlapped: yes only for EXT.

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTpuT 711; "Mmem:Pack “"RAM:"""
OUTPUT 711; "mmemory:pack ‘EXT:’"

Command Syntax: MMEMory:PACK<sp>{"|"HEXT: | INT: | RAM:}{’ |"}

Description:
Use this command to recover unused space between files on the specified mass storage device.

Spaces can be left between the files on a mass storage device when other files are deleted
from the device. These spaces may be inaccessible when you are storing new files.

When you send this command, all files are shifted toward the beginning of the device’s
memory or disc space so that they are directly adjacent to one another. This shifts the space
between those files to the end of memory or disc space. The recovered space can then be
used for storing new files.

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-152

Command Reference

MMEM:REName command

Cverlapped: yes

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ocurpur 711;"MMEM:REN ‘INT:MYFILE', INT:MyFiler"
OUTPUT 711;"MMEMORY:RENAME ""EXT:VOLUME2"",""EXT:VOLUME4"""

Command Syntax: MMEMory:REName<sp>{’|"} <old name>{'|"},{’|"} <new name>{"|"}

<old_name>:=[<msi>]<filename> (when changing the name of a file)
<msi> (when changing the name of a device volume)

<old name>> designates the mass storage device or the file you want
to rename

<new _name>:=[<msi>]<filename> (when changing the name of a file)
[<msi>]<volume name> (when changing the name of a device volume)
<new _name> designates the new name of the file or mass storage device
<msi>n=FEXT:|INT: | RAM:
<msi> must be the same for both <old_name> and <new name>.
<filename>::=1 to 10 printahle ASCII characters

<volume name>:=1 to 10 printable ASCII characters

Description:

This command allows you to change the volume name of a mass storage device or to change
the name of a file.

Volume names can be especially useful for identifying the floppy discs you use in the
analyzer’s internal disc drive. The name is displayed on the analyzer’s screen when the
catalog is turned on (SCR:CONT DCAT).

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer passes control back. For more
information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-153

Command Reference

MMEM:SAVE _ selector

Description:

This command only selects the MMEM:SAVE subsystem. Sending MMEM:SAVE alone
does nothing.

Commands in the MMEM:SAVE subsystem are used to save the analyzer’s trace and setup
information to files on a mass storage device. All of the commands allow you to specify the
device on which files will be saved. If you do not specify a device, however, the default device
is assumed. (Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer passes control back. For more
information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

The MMEM:SAVE and MMEM:STOR subsystems are very similar. Commands in both

subsystems let you save files. But there is one major difference: files saved with SAVE

commands will be ASCII encoded while files saved with STOR commands will be binary
encoded. The difference between these two kinds of encoding is discussed in Chapter 4,
“Transferring Data.”

MMEM:SAVE:DTABIle command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTpur 711;"Mmem:Save:Dtab:A "“EXT:mytable"""
OUTPUT 711;"Mmemory:Save:btableZ 'INT:DATA FILE2'"

Command Syntax: MMEMory:SAVE:DTABle[<spec>]<sp>{’|"} <msi>]<filename>{’|"}
<spec>u=":A" |:B|1|2
<msi>:=EXT:[INT:| RAM:
<filename>::=1 to 10 printable ASCII characters

Description:

Use this command to save a data table into an ASCII-encoded file. The data table is saved
from the display specified in <spec>.

See MMEM:SAVE for more information.

7-154

Command Reference

MMEM:SAVE:LIMit _ command

Overlapped: yes only for EXT:

Delayed result: no

Pass controf required: yes only for EXT:
FPower-up state; not applicable

Example Statements: ourpuT 711;"MMEM:SAVE:LIM4 ‘RAM:LIM TABLEL'"
QUTPUT 711;"Mmemory:Save:Limit8 rINT:MYLIMIT'™

Command Syntax: MMEMory:SAVE:LIMit<spec><sp>{’|"} <msi>]<filename> {*|"}

<spec>::=a single integer from 1 to 8
<msi>;=FEXT:|INT: | RAM:
<filename>::=1 to 10 printable ASCII characters

Description:

Use this command to save a limit table into an ASCII-encoded file. The data table saved is
the one specified in <spec>.

See MMEM:SAVE for more information.

MMEM:SAVE:MATH command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT,
Power-up state: not applicable

Example Statements: ouTPuUT 711;"mmem:save:math *"EXT:math defl"""
OUTPUT 711;"MMEMORY:SAVE:MATH “"INT:MathFile4"""

Command Syntax: MMEMory:SAVE:MATH<sp>{"|"}H <msi>]<filename> {*|"}
<msi>;=EXT:|INT: [RAM:

<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to save math definitions into an ASCII-encoded file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once. You can not save or recall individual functions or constants.

See MMEM:SAVE for more information.

7-155

Command Reference

MMEM:SAVE:STATe command

Overlapped: yes only for EXT:

Delayed result: no

Pass contro! required: yes only for EXT:
Power-up state: not applicable

Exampie Statements: ourpur 711;"MMEM:SAVE:STAT 'INT:Instr 4°°
OUTPUT 711;*MMEMORY:SAVE:STATE “"EXT:myState"""

Command Syntax: MMEMory:SAVE:STATe<sp>{’|"}H <msi>]<filename>{’|"}
<msi>::=EXT:|INT: | RAM:

<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to save the current instrument state (setup) into an ASCII-encoded file.

NOTE When you save an analyzer setup, you are also saving the following items: all eight
limit tables, both data tables, and all five math functions and constants. To
decrease the size of an instrument-state file, you can save limit and data tables
separately and then clear them before saving the setup.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
vou can save time by recalling an instrument state rather than sending many

individual commands.

See MMEM:SAVE for more information.

7-156

Command Reference

MMEM:SAVE:TRACe command

Cverlapped: yes only for EXT:

Delayed resuit: no

Pass control required: yes only for EXT.
Power-up state: not applicable

Example Statements: ourpur 711;"Mmem:Save:Tracl ""EXT:trace7”""
OUTPUT 711; “mmemory:save:trace:b ‘INT:B_Trace’"

Command Syntax: MMEMory:SAVE:TRACe[<spec>1<sgp> {’ |"}H [<msi>]<filename>{’|"}

<spec>:i=":A" |:B|1]|2
<msi>=EXT:[INT: |RAM:
<filename>:=1 to 10 printable ASCII characters

Description:

Use this command to save a trace into an ASCII-encoded file. The trace will be saved from
the display specified in <spec>.

See MMEM:SAVE for more information.

MMEM:STORe selector

Description:

This command only selects the MMEM:STOR subsystem. Sending MMEM:STOR alone
does nothing.

Commands in the MMEM:STOR subsystem are used to save the analyzer’s trace and setup
information to files on a mass storage device. All of the commands allow you to specify the
device on which files will be saved. If you do not specify a device, however, the default device
is assumed. (Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer passes control back. For more
information on passing control, see Chapter 2, ‘“‘Behavior in an HP-IB System.”

The MMEM:STOR and MMEM:SAVE subsystems are very similar. Commands in both
subsystems let you save files. But there is one major difference: files saved with STOR
commands will be binary encoded while files saved with SAVE commands will be ASCII
encoded. The difference between these two kinds of encoding is discussed in Chapter 4,
“Transferring Data.”

7-157

Command Reference

MMEM:STOR:DTABIle command

Overlapped: yes only for EXT:

Celayed result: no

Pass control required: yes only for EXT:
Power-up state: not appiicable

Example Statements: ourpur 711;"Mmem:Stor:Dtab:B ‘INT:mytable’"”
ouTPUT 711;"Mmemory:Store:Dtable2 'RAM:TABLE 9'"

Command Syntax: MMEMory:STORe:DTABlef <spec>]<sp> {’ |} <msi>] <filename>{"|"}
<spec>u=":A" |:B|1|2
<msi>:=EXT: HINT: | RAM:
<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to save a data table into a binary-encoded file. The data table is saved
from the display specified in <spec>.

See MMEM:STOR for more information.

MMEM:STOR:LIMit command

Overlapped: yes only for EXT:

Delayed result: no

Pass controf required; yes only for EXT:
Power-up state: not applicable

Example Statements: ourpur 711;"MMEM:STOR:LIMS ‘INT:limit 4°"
OUTPUT 711;"Mmemory:Store:Limit6 ""EXT:NEWTABLE"""

Command Syntax: MMEMory:STORe:LIMit<spec> <sp>{’|"}[< msi >]<filename> {*|"}

<spec>:=a single integer from 1 to 8
<msi>n=EXT:|INT:|RAM:
<filename> =1 to 10 printable ASCII characters

Description:

Use this command to save a limit table into a binary-encoded file. The data table saved is the
one specified in <spec>.

See MMEM:STOR for more information.

7-158

Command Reference

MMEM:STOR:MATH command

Overlapped: yes only for EXT;

Defayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourPuT 711;"mmem:stor:math "“RAM:Constant8"""
OUTPUT 711;"MMEMORY:STORE:MATH ""EXT:mathfunc™"”

Command Syntax:
MMEMory:STORe:MATH<sp> {’|"} <msi>]<filename>{"|"}
<msi>:;=EXT:|INT:|RAM:
<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to save math definitions into a binary-encoded file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once. You can not save or recall individual functions or constants.

See MMEM:STOR for more information.

7-159

Command Reference

MMEM:STOR:STATe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpuT 711;"MMEM:STOR:STAT 'EXT:State_14°"
OUTPUT 711;"MMEMORY:STORE:STATE ""INT:file state"""

Command Syntax: MMEMory:STORe:STATe<sp>{*|"}H <msi>]<filename>{’|"}
<msi>;=EXT:|INT: [RAM:
<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to save the current instrument state (setup) into a binary-encoded file.

NOTE When you save an analyzer setup, you are also saving the following items: alt eight
limit tables, both data tables, and all five math functions and constants. To
decrease the size of an instrument-state file, you can save limit and data tables
separately and then clear them before saving the setup.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
you can save time by recalling an instrument state rather than sending many

individual commands.

See MMEM:STOR for more information.

7-160

Command Reference

MMEM:STOR:TRACe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTPUT 711; "Mmem:Stor:Trac ""RAM:LOG_TRACE"""
OUTPUT 711;"mmemory:store:trace ‘INT:Trace File'"

Command Syntax: MMEMory:STORe: TRACe[<spec>]<sp>{’|"}H <msi>]<filename>{’]"}

<sgpec>:=":A7|:B|1]|2
<msi>:=EXT:]INT: | RAM:
<filename>::=1 to 10 printable ASCII characters

Description:

Use this command to save a trace into a binary-encoded file. The trace will be saved from
the display specified in <spec>.

See MMEM:STOR for more information.

7-161

Command Reference

7-162

Command Reference

PLOTter subsystem

Description:

Commands in this subsystem are used to define plotting parameters and to plot different
portions of the analyzer’s screen.

PLOT:ADDRess[?] command/query

Overlapped: no

Delayed result; no

Pass control required: no

Power-up state: saved in nonvolatite memory

Example Statements: ourpuT 711;"Plot:addr 3"
OUTPUT 711;"Plotter:Address 16"
CUTPUT 711;"plot:addr?™

Command Syntax: PLOTter:ADDRess<sp><value>

<value>:=any integer x, where 0 = x < 30 (NRf format)

Query Syntax: PLOTter:ADDRess?

Returned Format: <value><LF><“~END>

<value>:=an integer (NR1 format)

Description:

Use this command to enter the address of a plotter connected to the analyzer’s HP-IB. What
you enter here must match the address setting of the plotter’s HP-IB address switches.
(Refer to the plotter’s documentation for the location of its address switches.)

You can either use numbers or one of two nonnumeric parameters to set the value of
PLOT:ADDR. The nonnumeric parameters are:

* UP — increases the current value of PLOT:ADDR by one
* DOWN — decreases the current value of PLOT:ADDR by one

The address last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the address does not change.

The query returns the HP-IB address at which the analyzer expects to find a plotter.

PLOT:DUMP selector

Description:

This command only selects the PLOT:DUMP subsystem. Sending PLOT:DUMP alone
does nothing.

7-163

Command Reference

PLOT:DUMP:MARKer command

Overlapped: yes

Delayed result: no

Pass control required: yes
Power-up state: not applicable

Example Statements: ouTpur 711;"PLOT:DUMP:MARK"
OUTPUT 711;"Plotter:Dump:Marker”

Command Syntax: PLOTter: DUMP:MARKer

Description:

Use this command to plot the position of active trace’s main marker. The SCR:ACT query
tells you which track is currently active. The x and y values of the marker are plotted in
close proximity to the marker itself.

This command only plots a main marker when SCR:CONT is set to TRAC. Also, it only plots
the main marker of the active trace. The SCR:ACT command allows you to select the
active trace.

When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the plot operation. When
the operation is completed, the analyzer passes control back. For more information on
passing control, see Chapter 2, “Behavior in an HP-IB System.”

PLOT:DUMP:SCReen command

Overlapped: yes

Delayed result: no

Pass control required: yes
Power-up state: not applicable

Example Statements: oureur 711;"plot:dump:scr®
OUTPUT 711;"PLOTTER:DUMP:SCREEN"

Command Syntax: PLOTter:DUMP:SCReen

Description:;

Use this command to plot everything on the analyzer’s screen except the softkey labels.
When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the plot operation. When

the operation is completed, the analyzer passes control back. For more information on
passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-164

Command Reference

PLOT.DUMP:TRACe command

Overlapped: yes

Delayed result: no

Pass control required: yes
Power-up state: not applicable

Example Statements: ourpur 711;"PLOT:DUMP:TRAC"
OUTPUT 711;"PLOTTER:DUMP:TRACE"

Command Syntax: PLOTter:DUMP:TRACe

Description:

Use this command to plot the active trace. The SCR:ACT query tells you which trace is
currently active. Only the trace itself is plotted.

This command only plots a trace when SCR:CONT is set to TRAC. Also, it only plots the
active trace. The SCR:ACT command allows you to select the active trace.

When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the plot operation. When
the operation is completed, the analyzer passes control back. For more information on
passing control, see Chapter 2, “Behavior in an HP-IB System.”

PLOT:LTYPe selector

Description:

This command only selects the PLOT:LTYP subsystem. Sending PLOT:LTYP alone
does nothing.

7-165

Command Reference

PLOT.LTYP:TRACe[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: —4096

Example Statements: ourpur 711;"Plot:Ltyp:Trac 1"
OUTPUT 711;"plotter:ltype:trace:b 6"
QUTPUT 711;"PLOT:LTYP:TRAC2?"

Command Syntax: PLOTter:LTYPe:TRACe[<spec>]<sp><value>
<spec>:=":A7 |:B|1|2

<value>::=any integer x, where x = —4096, or 0 < x < 6 (NRf format)

Query Syntax: PLOTter:LTYPe: TRACe{ <spec>]?

Returned Format: <value><LF>< ~END>

<value>::=an integer (NR1 format)

Description:
This command lets you select the line type that will be used to plot the specified trace.

The number you enter is encoded. The meanings of three numbers you can enter are
as follows:

e 4096 — solid.
* 1 — dotted.
* 2 _ dashed.

You must refer to your plotter documentation for the meanings of 0 and 3-6.

You can either use numbers or one of two nonnumeric parameters to set the value of
PLOT:LTYF. The nonnumeric parameters are:

* UP — increases the current value of PLOT:LTYP by one
* DOWN - decreases the current value of PLOT:LTYP by one

The query response indicates which line type is currently selected for the specified trace.

PLOT:PEN selector

Description:

This command only selects the PLOT:PEN subsystem. Sending PLOT:PEN alone
does nothing,

7-166

PLOT:PEN:ALPHa[?]

Command Reference

command/query

Example Statements: oureur 711;"Plot:Pen:Alph 1"
OUTPUT 711;"Plotter:Pen:Alpha 27"
QUTPUT 711;"plot:pen:alph?”

Command Syntax: PLOTter: PEN:ALPHa<sp><pen_number>

<pen_number>::=any integer x, where 0 < x < 64 (NRf format)

Query Syntax: PLOTter:PEN:ALPHa?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

This command allows you to select the pen that will be used to plot the screen’s
alphanumeric characters. The number you send specifies one of the pens in the plotter’s

drafting pen carrousel.

You can either use numbers or one of two nonnumeric parameters to set the value of

PLOT:PEN:ALPH. The nonnumeric parameters are:

* UP — increases the current value of PLOT:PEN:ALPH by one
* DOWN — decreases the current value of PLOT:PEN:ALPH by one

The query returns the pen number currently designated to plot the screen’s alpha

numeric characters.

7-167

Command Reference

PLOT:PEN:GRID{[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 2

Example Statements: ourpuT 711;"PLOT:PEN:GRID 10"
OUTPUT 711;"Plotter:Pen:Grid 17"
OUTPUT 711;"Plot:Pen:Grid?"

Command Syntax: PLOTter:PEN:GRID <sp> <pen_number>

<pen_number>::=any integer x, where 0 < x < 64 (NRf format)

Query Syntax: PLOTter:PEN:GRID?

Returned Format: <value>»<LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to select the pen that will be used to plot the trace grids. The
number you send specifies one of the pens in the plotter’s drafting pen carrousel.

You can either use numbers or one of two nonnumeric parameters to set the value of
PLOT:PEN:GRID. The nonnumeric parameters are:

* UP — increases the current value of PLOT:PEN:GRID by one
* DOWN — decreases the current value of PLOT:PEN:GRID by one

The query returns the pen number currently designated to plot the trace grids.

Command Reference

PLOT:PEN:INITialize command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: outpur 711;"plot:pen:init”
CUTPUT 711;"PLOTTER:PEN:INITIALIZE"

Command Syntax: PLOTter:PEN:INITialize

Description:

This command initializes all of the plotter pen and line-type parameters to their power-up
states. The initialized parameters are:

« PLOT:PEN:ALPH
+ PLOT:PEN:GRID
* PLOT:PEN:TRAC
* PLOT:LTYP:TRAC

7-169

Command Reference

PLOT:PEN:TRACe][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 3 ({trace A)
4 (trace B)

Example Statements: ourpur 711;"PLOT:PEN:TRAC 1"
OUTPUT 711;"PLOTTER:PEN:TRACE:B 12"
OUTPUT 711;"Plot:Pen:Trac?”

Command Syntax: PLOTter:PEN:TRACe[<spec>]<sp><pen_number>
<gpec>u=":A"|[:B]|1]|2

<pen_number>::=any integer x, where 0 < x < 64 (NRf format)

Query Syntax: PLOTter:PEN:TRACe[<spec>]1?

Returned Format: <value><LF><"~END>
<value>::=an integer (NR1 format)

Description:

This command allows you to select the pen that will be used to plot trace A or trace B. The
number you send specifies one of the pens in the plotter’s drafting pen carrousel.

You can either use numbers or one of two nonnumeric parameters to set the value of
PLOT:PEN:TRAC. The nonnumeric parameters are:

¢ UP - increases the current value of PLOT:PEN:TRAC by one
* DOWN — decreases the current value of PLOT:PEN:TRAC by one

'The query returns the pen number currently designated to plot the specified trace.

7170

PLOT:SPEed[?]

Command Reference

command/query

Example Statements: outpur 711;"Plot:Spe 5"
QUTPUT 711;"plotter:speed 36"
OUTPUT 711;“PLOT:SPE?"

Command Syntax: PLOTter:SPEed <sp> <value>

<value>::=any integer x, where 1 < x < 100 (NRf format)

Query Syntax: PLOTter:SPEed?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Overlapped:

Delayed result:

Pass control required:
Power-up state:

This command allows you to specify the plotting speed. The assumed unit for the value

entered is em/s.

You can either use numbers or one of two nonnumeric parameters to set the value of

PLOT:SPE. The nonnumeric parameters are:

+« UP — increases the current value of PLOT:SPE by one

* DOWN — decreases the current value of PLOT:SPE by one

The query returns the current plotting speed.

no
no
no
36

7-171

Command Reference

7-172

Command Reference

PRINter subsystem

Description:

Commands in this subsystem are used to specify a printer address and to print different
pertions of the analyzer’s screen.

PRIN:ADDRess[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: outpur 711;"Prin:Addr 1"
OUTPUT 711; "Printer:Address 24"
OUTPUT 711;"prin:saddri™

Command Syntax: PRINter:ADDRess<sp><value>

<value>:'=any integer x, where 0 < x < 30 (NRf format)

Query Syntax: PRINter:ADDRess?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Use this command to enter the address of a printer connected to the analyzer’s HP-IB. What
you enter here must match the address setting of the printer’s HP-IB address switches.
(Refer to the printer’s documentation for the location of its address switches.)

You can either use numbers or one of two nonnumeric parameters to set the value of
PRIN:ADDR. The nonnumeric parameters are:

* UP — increases the current value of PRIN:ADDR by one
* DOWN - decreases the current value of PRIN:ADDR by one

The address last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the address does not change.

The query returns the HP-IB address at which the analyzer expects to find a printer.

7-173

Command Reference

PRIN:DUMP selector

Description:

This command only selects the PRIN:DUMP subsystem. Sending PRIN:DUMP alone
does nothing.

PRIN:DUMP:ALPHa command

Overlapped: yes

Delayed result: no

Pass control required: yes
Power-up state: not applicable

Example Statements: ourpur 711;"PRIN:DUMP:ALPH"
OUTPUT 711;"Printer:Dump:Alpha"

Command Syntax: PRINter:DUMP:ALPHa

Description:

This command allows you to print any ASCII text currently displayed on the analyzer’s
screen (except for softkey labels). Trace graphics are not printed.

Text is printed for any setting of SCR:CONT.

PRIN:DUMP:SCReen command

Overiapped: yes

Delayed result: no

Pass control required: yes
Power-up state: not applicable

Example Statements: ourpur 711;"prin:dump:scr®
OUTPUT 7¥11;"PRINTER:DUMP:SCREEN"

Command Syntax: PRINter:DUMP:SCReen

Description:

Use this command to print everything on the analyzer’s screen except the softkey labels.
When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the print operation.

When the operation is completed, the analyzer passes control back. For more information on
passing control, see Chapter 2, “Behavior in an HP-IB System.”’

7-174

Command Reference

SCReen subsystem

Description:

Commands in this subsystem are used to control the contents of the analyzer’s screen. Some
of the commands can be useful for controlling the amount of information plotted or printed
with the PLOT:DUMP:SCR or PRIN:DUMP:SCR command.

SCR:ACTive[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: A

Examp!e Statements: ourrur 711;"SCR:ACT A"
OUTPUT 711;"SCREEN:ACTIVE B"
OUTPUT 711;"ScrsAck?”

Command Syntax: SCReen:ACTive<sp>{A|B}
Query Syntax: SCReen:ACTive?
Returned Format; {A|B}<LF><"END>

Description:
This command selects the active trace.

Two commands in the PLOTter subsystem, PLOT:DUMP:MARK and PLOT:-DUMP:TRAC,
act on the active trace. This command allows you to specify which trace will be acted on by
those commands.

The query returns A or B, depending on which of the two traces is active.

7-175

Command Reference

SCR:ANNotation[?]

command/query

Example Statements: ourrur 711;"Scr:Ann Off"

Command Syntax:
Query Syntax:
Returned Format:

Description:

OUTPUT 711;"screen:annotation 1"
OUTPUT 711;"SCR:ANN?"

SCReen:ANNotation<sp>{OFF|ON|0|1}
SCReen:ANNotation?

{0|1}<LF><"END>

Overlapped: no
Delayed resuit: no

Pass control required: no
Power-up state: 1

Use this command to enable and disable display of the marker readouts and the x-axis labels.

The query returns 0 if the readouts and labels are blanked, 1 if they are being displayed.

7176

Command Reference

SCR:CONTents[?] command/query

Overlapped: yes only for DCAT, and then
only when MMEM:MSI is EXT;
Delayed result: no
Pass controf required: yes only for DCAT, and then
only when MMEM:MS| is EXT:
Power-up state: TRAC

Exampie Statements: ourpur 711;"Scr:Cont Dcat®
OUTPUT 711;"Screen:Contents Tlog"
OQUTPUT 711;"scr:cont?"

Command Syntax: SCReen:CONTents<sp> <option>

<option>::=APPLiecation | DCATalog| FLOG|MEMory |STATe| TLOG| TRACe

Query Syntax: SCReen:CONTents?
Returned Format: {APPL|DCAT|FLOG |MEM|STAT|TLOG|TRAC} <LF>< "~ END>
Description:

This command lets you specify the contents of the analyzer’s screen. The options are:

¢ APPLication — displays a list of all applications that are currently loaded into
the analyzer

¢ DCATalog — displays the catalog of the current mass storage device
+ FLOG - displays the fault log

¢+ MEMory ~ displays a summary of memory utilization

e STATe — displays a summary of the analyzer setup

+ TLOG - displays the test log

* TRACe — displays one or both of the traces, depending on the setting of
SCR:FORM

If you send SCR:CONT DCAT while MMEM:MSI is "EXT:", the active controller on the
HP-IB must temporarily pass control to the analyzer. When execution of the command has
been completed, the analyzer passes control back. For more information on passing control,
see Chapter 2, ‘““Behavior in an HP-IB System.”

The query tells you which of the options is currently being displayed.

7-177

Command Reference

SCR:FORMat[?] command/query

Overlapped: no
Delayed result: no

Pass control required: ne
Power-up state: SING

Example Statements: ourpur 711;"SCR:FORM FBAC”
OUTPUT 711;"Screen:Format Ulower"”
ouTPUT 711;"Scr:Form?”

Command Syntax: SCReen:FORMat <sp> <option>
<option>::=FBACk|SINGle | ULOWer

Query Syntax: SCReen:FORMat?
Returned Format: {FBAC|SING|ULOW} <LF><~END>
Description:

This command lets you specify the format for trace digplays. It only affects the analyzer’s
screen when SCR:CONT is set to TRAC. The options are:

+ FBACKk (front/back) — Two full-height traces are displayed on top of each other.
The inactive trace is de-emphasized.

+ SINGle — Only the active trace is displayed.
¢+ ULOWer (upper/lower) — Two half high traces are displayed.

The query tells you which of the options is currently selected.

7-178

Command Reference

SCR[:STATe][?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: outpur 711;"scr on”
OUTPUT 711;"SCREEN:STATE 07
OUTPUT 711;"SCR?"

Command Syntax: SCReen[:3TATel<sp> {OFF|ON|0|1}
Query Syntax: SCReen[:STATe]?
Returned Format: {0|1}<LF><"~END>

Description:

Use this command to enable and disable display of everything on the analyzer’s sereen except
the softkey labels.

In addition to the softkey labels, one other thing appears on the sereen when SCR:STAT is
OFF—a message indicating that the display has been blanked.

The query returns 0 if the display is blanked, 1 if it is not.

7-179

Command Reference

7-180

Service —
System

Command Referance

SERVice subsystem

Description:

All commands in this subsystem are used invoke service tests or service adjustment routines.
Since these tests and routines should be used only by qualified service personnel, the
commands are not described here. See the HP 35660A Service Manual for descriptions.

7-181

Command Reference

7-182

Command Reference

SOURce subsystem

Description:
Commands in this subsystem are used to define the analyzer’s source output.

SOUR:AMPLitude[?] command/query

Description:

SOUR:AMPL is functionally equivalent to SOUR:AMPL:LEV. See the latter command for
more details.

SOQUR:AMPL[:LEVel][?] command/query

Overlapped: no
Delayed result: ves
Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"sSour:ampr, 5"
OUTPUT 711;"SOURCE:AMPLITUDE:LEVEL -40DBVRMS"
OUTPUT 711;"Sour:Ampl?"

Command Syntax: SOURce:AMPLitude[:LEVel] <sp> < value>[<unit>]

<value>::=a decimal number (NRf format)
<unit>:="~V~ |VRMS |DBVPK|DBVRMS

Query Syntax: SOURce:AMPLitude[:LEVel]?
Returned Format: <value><LF><~END>
Description:

Use this command to specify the source output fevel,

You can either use numbers or one of three nonnumeric parameters to set the value of
SOUR:AMPL:LEV. The nonnumeric parameters are:

* UP - increases the current value of SOUR:AMPL:LEV to the next largest
allowable value

* DOWN — decreases the current value of SOUR:AMPL:LEV to the next smallest
allowable value

* (MARKI:A|:B]:VAL) — sets SOUR:AMPL:LEV to the amplitude of the main
marker, even when the marker reference is enabled

The query returns the current source output level in the units last entered. Units are not
returned with the value.

7-183

Command Reference

SOUR:FREQuency[?] command/query

Description:
SOUR:FREQ is functionally equivalent to SOUR:FREQ:CW. See the latter command for
more details.

SOUR:FREQ[:CW][?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 10240

Example Statements: ourpur 711;"Sour:Freq 100"
QUTPUT 711;"source:frequency:cw 45khz”
QUTPUT 711;"SOUR:FREQ?"

Command Syntax: SOURece:FREQuency[:CW] <sp> <value>[<unit>]

<value>:=any x, where 0 < x < 115,000 (when units are HZ)
Values should be sent using the NRf format.
<unit>:="HZ™~ |KHZ

Query Syntax: SOURce:FREQuency[:CW]?
Returned Format: <value>»<LF>< ~END>
Description:

Use this command to specify the frequency of a fixed sine (continuous wave) source output.

You can either use numbers or one of three nonnumeric parameters to set the value of
SOUR:FREQ:CW. If you use numbers, the source frequency can be set in 1/64 hertz
increments. The nonnumeric parameters are:

» UP — increases the current value of SOUR:FREQ:CW by the increment between
points on the x-axis

* DOWN — decreases the current value of SOUR:FREQ:CW by the increment
between points on the x-axis

* (MARK[:A|:B]:VAL) — sets SOUR:FREQ:CW to the frequency of the main
marker, even when the marker reference is enabled

The query returns the frequency currently specified for the fixed sine source output. The
frequency is returned in Hz.

7-184

Command Reference

SOUR:FREQ:MODE|[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: CW

Exampie Statements: ouTruT 711;"Sour:Freg:Mode CW"
OUTPUT 711;"Source:Frequency:Mode Pchirp”
OUTPUT 711;“sour:freq:mode?™

Command Syntax: SOURce:FREQuency: MODE <sp> {CW|PCHirp | RANTIom}

Query Syntax: SOURce:FREQuency: MODE?
Returned Format: {CW|PCH|RAND}<LF><~END>
Description:

Use this command to change the source output mode. The options are:

* CW — Continuous sine wave mode. You can specify the frequency of the sine
wave using the SOUR:FREQ:CW command.

* PCHirp — Periodic chirp mode. The periodic chirp waveform is a fast sine sweep
across the current frequency span. The sweep repeats with the same period as
the eurrent time record.

¢ RANDom — Random noise mode.

The query indicates which of the three source output modes is selected.

7-185

Command Reference

SOUR:STATe[?]

command/query

Example Statements: ourpur 711;"SOUR:STAT OFF"
QUTPUT 711;"“Source:State 1"
OUTPUT 711;"Sour:Stat?"

Command Syntax: SOURce:STATe<sp>{OFF|ON|0|1}

Query Syntax: SOURce:STATe?
Returned Format: {0{1}<LF><"END>
Description:

This command enables and disables the analyzer’s source output.

The query returns 0 if source output is disabled, 1 if it is enabled.

7-186

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 0

Command Reference

STATus subsystem

Description:

Commands in this subsystem give you access to instrument status. They also allow you to
specify which status changes will cause the analyzer to request service from the
HP-IB controller.

STAT:DEVice selector

Description:

This command only selects the STAT:DEV subsystem. Sending STAT:DEV alone
does nothing.

All commands in this subsystem either set or query one of the five registers in the Device
Status register set. Decimal weights are assigned to bits in the registers according to the
following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 15. The value sent with each
command or returned with each query is a sum of the decimal weights of all set bits.

Information about the instrument is constantly updated in the Device Status condition
register. Two Device Status transition registers then determine how much of that
information is reported to the Device Status event register.

The Device Status event register is summarized in bit 7 of the Status Byte register.
The Device Status enable register determines how much of the event register information
is included in the summary.

For more information on the Device Status register set, see Chapter 5, “Using the
HP 35660A’s Status Registers.”

7-187

Command Reference

STAT:DEV:CONDition?

query

Example Statement: ourpur 711;"STAT:DEV:COND?"
Query Syntax: STATus:DEVice:CONDition?

Returned Format: <value><L¥F>< ~END>

<value>:=an integer (NR1 format)

Description:

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state; 128

This query returns the current state of the Device Status condition register. The state is
returned as a sum of the decimal weights of all set bits. (See STAT:DEV for formula.)

Each bit in the register reports on a particular instrument condition. A bit is set to 1 when
the condition is true and reset to 0 when the condition is false. For information on the
conditions assigned to each bit, see Chapter 5, “Using the HP 35660A’s Status Registers.”

This query does not change the state of any bits in the Device Status condition register.

For more information, see STAT:DEV.

7-188

Command Refarence

STAT:DEV:ENABIe[?] command/query

Qverlapped: no
Delayed result: no

Pass control required; no
Power-up state: 0

Example Statements: ourpur 711;"Stat:Dev:Enab 16"
OUTPUT 711;"status:device:enable 224"
OUTPUT 711;"STAT:DEV:ENAB?"

Command Syntax: STATus:DEVice:ENABle<gp> <value>

<value>::=any integer x, where 0 = x < 65,535 (NRf format)

Query Syntax: STATus:DEVice:ENABle?

Returned Format: <value>» <LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Device Status enable register. Send the sum of
the decimal weights of all bits you want to set. (See STAT:DEV for formula.)

When an enable register bit is set to 1, the corresponding bit of the Device Status event
register is enabled. The enabled bit will be included in the Device Status summary.

The Device Status summary is reported to bit 7 of the Status Byte register. Bit 7 is only set
if both of the following are true:

* One or more bits of the Device Status event register are set

» At least one of the set bits is enabled by a corresponding bit in the Device Status
enable register

All bits in the Device Status enable register are initialized to 0 when the instrument is
turned on. However, the current setting of bits is not modified when you send the
*RST command.

The query returns the current state of the Device Status enable register The state is
returned as a sum of the decimal weight of all set bits.

For more information, see STAT:DEV.

7-189

Command Reference

STAT:DEV:EVENt?

query

Example Statement: ouTtpuT 711;"Stat:Dev:Even?"
Query Syntax: STATus:DEVice:EVENt?

Returned Format: <value><LF><” END>

<value>::=an integer (NR1 format)

Description:

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

This query returns the current state of the Device Status event register. The state is
returned as a sum of the decimal weights of all set bits. (See STAT:DEV for formula.)

The register is cleared after being read by this query.

Each bit in the Device Status event register is set to 1 when the corresponding bit of the
Device Status condition register makes a transition from 0 to 1 or from 1 to 0. However, this
is only true if the transition is enabled by one of the two Device Status transition registers.

Once set, a bit in the Device Status event register remains set. It disregards any further
changes in the corresponding condition register bit. To reset event register bits to 0, you

must either query the event register or send the *CLS command.

For more information, see STAT:DEV.

7-190

Command Reference

STAT:DEV:NTR[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
FPower-up state; 0

Example Statements: ouTpuT 711;"STAT:DEV:NTR 4"
OUTPUT 711;"Status:Device:Ntr 137
OUTPUT 711;"Stat:Dev:Ntr?"

Command Syntax: STATus:DEVice:NTR<sp> <value>

<value>:=any integer x, where 0 < x < 65,535 (NRf format)

Query Syntax: STATus:DEVice:NTR?

Returned Format;: <value> <LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Device Status negative transition register (NTR).
Send the sum of the decimal weights of all bits you want to set. (See STAT:DEV for formula.)

Bits in this register are used to enable corresponding bits in the Device Status condition
register. Each bit in the condition register indicates whether a particular instrument
condition is true or false. When a bit in the condition register makes a transition from true
to false, that transition is only reported to the event register if the corresponding NTR bit is
set to 1.

All bits in the Device Status NTR are initialized to 0 when the instrument is turned on.
However, the current setting of bits is not modified when you send the *RST command.

The query returns the current state of the Device Status NTR. The state is returned as a
sum of the decimal weight of all set bits.

For more information, see STAT:DEV.

7-191

Command Referance

STAT.DEV:PTR[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"stat:dev:ptr 2"
OUTPUT 711;"STATUS:DEVICE:PTR 7"
OUTPUT 711;"STAT:DEV:PTR?"

Command Syntax: STATus:DEVice:PTR<sp><value>

<value>::=any integer x, where 0 < x < 65,535 (NRf format)

Query Syntax: STATus:DEVice:PTR?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Device Status positive transition register (PTR).
Send the sum of the decimal weights of all bits you want to set. (See STAT:DEV for formula.)

Bits in this register are used to enable corresponding bits in the Device Status condition
register. Each bit in the condition register indicates whether a particular instrument
condition is true or false. When a bit in the condition register makes a transition from false
to true, that transition is only reported to the event register if the corresponding PTR bit is
set to 1.

All bits in the Device Status PTR are initialized to 0 when the instrument is turned on.
However, the current setting of bits is not modified when you send the *RST command.

The query returns the current state of the Device Status PTR. The state is returned as a
sum of the decimal weight of all set bits.

For more information, see STAT:DEV,

7-192

Command Reference

STAT.DINTegrity selector

Description:

This command only selects the STAT:DINT subsystem. Sending STAT:DINT alone
does nothing.

All commands in this subsystem either set or query one of the five registers in the Data
Integrity register set. Decimal weights are assigned to bits in the registers according to the
following formula:

2(bit;_number)

with acceptable values for bit_number being 0 through 15. The value sent with each
command or returned with each query is a sum of the decimal weights of all set bits.

Information that affects the validity of measurement results is constantly updated in the
Data Integrity condition register. Two Data Integrity transition registers then determine
how much of that information is reported to the Data Integrity event register.

The Data Integrity event register is summarized in bit 4 of the Device Status condition
register. The Data Integrity enable register determines how much of the event register
information is included in the summary.

For more information on the Data Integrity register set, see Chapter 5, “Using the
HP 35660A’s Status Registers.”

7-193

Command Reference

STAT:DINT:CONDition? query

Qverlapped: no
Delayed resuit: no

Pass control required: no
Power-up state: 0

Example Statement: ourpur 711;"STAT:DINT:COND?"
Query Syntax: STATus:DINTegrity:CONDition?

Returned Fermat: <value><LF>< ~END>
<value>::=an integer (NRI1 format)

Description:

This query returns the current state of the Data Integrity condition register. The state is
returned as a sum of the decimal weights of all set bits. (See STAT:DINT for formula.)

Each bit in the register reports on a particular instrument condition. A bit is set to 1 when
the condition is true and reset to 0 when the condition is false. For information on the
conditions assigned to each bit, see Chapter 5, “Using the HP 35660A’s Status Registers.”

This query does not change the state of any bits in the Data Integrity condition register.
For more information, see STAT:DINT.

7-184

Command Reference

STAT:DINT-ENABIe[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: O

Example Statements: ourpur 711;"sStat:pint:Enab 2"
OUTPUT 711;"status:dintegrity:enable 768"
QUTPUT 711;"STAT:DINT:ENAB?"

Command Syntax: STATus:DINTegrity: ENABle <sp> <value>

<value>:=any integer x, where 0 < x < 65,5635 (NRf format)

Query Syntax: STATus:DINTegrity:ENABle?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Data Integrity enable register. Send the sum of
the decimal weights of all bits you want to set. (See STAT:DINT for formula.)

When an enable register bit is set to 1, the corresponding bit of the Data Integrity event
register is enabled. The enabled bit will be included in the Data Integrity summary.

The Data Integrity summary is reported to bit 4 of the Device Status condition register. Bit
4 is only set if both of the following are true:

* One or more bits of the Data Integrity event register are set

* At least one of the set bits is enabled by a corresponding bit in the Data Integrity
enable register

All bits in the Data Integrity enable register are initialized to 0 when the instrument is
turned on. However, the current setting of bits is not modified when you send the
*RST command.

The query returns the current state of the Data Integrity enable register The state is
returned as a sum of the decimal weight of all set bits.

For more information, see STAT:DINT.

7-195

Command Reference

STAT:DINT:EVENt?

query

Example Statement: ouTpur 711;"Stat:Dint:Even?”
Query Syntax: STATus:DINTegrity: EVENt?

Returned Format: <value><LF><~END>

<value>:=an integer (NR1 format)

Description:

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

This query returns the current state of the Data Integrity event register. The state is
returned as a sum of the decimal weights of all set bits. (See STAT:DINT for formula.)

The register is cleared after being read by this query.

Each bit in the Data Integrity event register is set to 1 when the corresponding bit of the
Data Integrity condition register makes a transition from 0 to 1 or from 1 to 0. However, this
is only true if the transition is enabled by one of the two Data Integrity transition registers.

Once set, a bit in the Data Integrity event register remains set. It disregards any further
changes in the corresponding condition register bit. To reset event register bits to 0, you

must either query the event register or send the *CLS command.

For more information, see STAT:DINT

7-196

Command Reference

STAT:DINT:NTR[?] command/query

Overlapped: no
Delayed result: no

Pass centroi required; no
Power-up state: 0

Example Statements: ouTpuT 711;"STAT:DINT:NTR 16"
OUTPUT 711;"Status:Dintegrity:Ntr 12"
OUTPUT 711;"Stat:Dint:Ntr?"

Command Syntax: STATus:DIN Tegrity:NTR<sp> <value>
<value>::=any integer x, where 0 < x < 65,535 (NRf format)

Query Syntax: STATus:DINTegrity:NTR?

Returned Format: <value><LF><"~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Data Integrity negative transition register (NTR).
Send the sum of the decimal weights of all bits you want to set. (See STAT:DINT
for formula.)

Bits in this register are used to enable corresponding bits in the Data Integrity condition
register. Each bit in the condition register indicates whether a particular instrument
condition is true or false. When a bit in the condition register makes a transition from true
to false, that transition is only reported to the event register if the corresponding NTR bit is
set to 1,

All bits in the Data Integrity NTR are initialized to 0 when the instrument is turned on.
However, the current setting of bits is not modified when you send the *RST command.

The query returns the current state of the Data Integrity NTR. The state is returned as a
sum of the decimal weight of all set bits.

For more information, see STAT:DINT.

7197

Command Reference

STAT:DINT:PTR[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ocurpur 711;"stat:dint:ptr 1"
OUTPUT 711;"STATUS:DINTEGRITY:PTR 48"
CUTPUT 711;"Stat:Dint:Ptr?2”

Command Syntax: STATus:DINTegrity:PTR<sp> <value>

<value>::=any integer x, where 0 < x < 65,535 (NRf format)

Query Syntax: STATus:DINTegrity:PTR?

Returned Format: <value><LF>< ~END>

<value>:=an integer (NR1 format)

Description:
This command allows you to set bits in the Data Integrity positive transition register (PTR).

Send the sum of the decimal weights of all bits you want to set. (See STAT:DINT
for formula.)

Bits in this register are used to enable corresponding bits in the Data Integrity condition
register. Each bit in the condition register indicates whether a particular instrument
condition is true or false. When a bit in the condition register makes a transition from false
to true, that transition is only reported to the event register if the corresponding PTR bit is
set to 1.

All bits in the Data Integrity PTR are initialized to 0 when the instrument is turned on.
However, the current setting of bits is not modified when you send the *RST command.

The query returns the current state of the Data Integrity PTR. The state is returned as a
sum of the decimal weight of all set bits.

For more information, see STAT:DINT.

7-198

Command Reference

STAT:USER selector

Description:

This command only selects the STAT:USER subsystem. Sending STAT:USER alone
does nothing.

The commands in this subsystem either set or query one of the two registers in the User
Status register set. Decimal weights are assigned to bits in the registers according to the
following formula:

2(bit__number)

with acceptable values for bit_number being 0 through 15. The value sent with each
command or returned with each query is a sum of the decimal weights of all set bits.

The User Status event register is summarized in bit 0 of the Status Byte register. The User
Status enable register determines how much of the event register information is included in
the summary.

For more information on the User Status register set, see Chapter 5, “Using the
HP 35660A’s Status Registers.”

7-199

Command Refsrence

STAT:USER:ENABIle[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"STAT:USER:ENAB 256"
OUTPUT 711;"STATUS:USER:ENABLE 53"
OUTPUT 711;"Stat:User:Enab?”

Command Syntax: STATus:USER:ENABle<sp > <value>

<value>:=any integer x, where 0 < x < 65,5635 (NRf format)

Query Syntax: STATus:USER:ENABIle?

Returned Format: <value><LF>< ~END>

<value>:=an integer (NR] format)

Description:

This command allows you to set bits in the User Status enable register. Send the sum of the
decimal weights of all bits you want to set. (See STAT:USER for formula.)

When an enable register bit is set to 1, the corresponding bit of the User Status event
register is enabled. The enabled bit will be included in the User Status summary.

The User Status summary is reported to bit 0 of the Status Byte register. Bit 0 is only set if
both of the following are true:

¢ One or more bits of the User Status event register are set

* At least one of the set bits is enabled by a corresponding bit in the User Status
enable register

All bits in ‘the User Status enable register are initialized to 0 when the instrument is turned
on. However, the current setting of bits is not modified when you send the *RST command.

The query returns the current state of the User Status enable register The state is returned
as a sum of the decimal weight of all set bits.

For more information, see STAT:USER.

7-200

STAT:USER:EVENt?

Command Reference

query

Example Statement: ourpur 711;"Stat:User:Even?"
Query Syntax: STATus:USER:EVENt?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Overlapped: no
Delayed resuit: no

Pass control required; no
Power-up state: 0

This query returns the current state of the User Status event register. The state is returned
as a sum of the decimal weights of all set bits. (See STAT:USER for formula.) The register is

cleared after being read by this query.

The analyzer has ten User SRQ softkeys. A bit in the User Status event register is set to 1
when the corresponding User SRQ softkey is pressed. A bit can also be set by sending the

appropriate STAT:USER:PULS command via the HP-IB.

Once set, a bit in the User Status event register remains set. To reset event register bits to
0, you must either query the event register or send the *CLS command.

For more information, see STAT:USER.

7-201

Command Reference

STAT-USER:PULSe command

Overlapped: no

Delayed result: no

Pass control required:; no
Power-up state: not applicable

Example Statements: ouTpur 711;"Stat:User:Puls 6"
OUTPUT 711;"Status:User:Pulse 288"

Command Syntax: STATus:USER:PULSe<sp> <value>
<value>::=any integer x, where 0 < x < 65,635 (NRf format)
Description:

This command allows you to set bits in the User Status event register. Send the sum of the
decimal weights of all bits you want to set. (See STAT:USER for formula.)

7-202

Command Reference

SWEep subsystem

Description:

The single command in this subsystem is used to specify the length of the time record you
want to analyze.

SWE:TIME[?] command/query

Overlapped:; no

Delayed result: yes

Pass control required: no
Power-up state: 0.003906

Example Statements: ouTpur 711;"SWE:TIME 2048"
QUTPUT 711;"Sweep:Time 125MS"
OUTPOT 711;"Swe:Time?”

Command Syntax: SWEep:TIME <sp> <value>[<unit>]

<value>:=any x, where x=(400x 2")/max_span (NRf format)
n::=an integer from 0 through 19

max_span::=102,400 for one-channel measurements

51,200 for two-channel measurements
<unit>:="8" |MS]US

Query Syntax: SWEep: TIME?

Returned Format: <value><LF><~END>

< value>::=a decimal number (NRf format)

7-203

Command Reference

Description:
Use this command to specify the length of the time record you want to analyze.

When you send this command, two other values are adjusted. FREQ:SPAN is adjusted so the
following formula is true:

FREQ:SPAN=400/SWE:TIME
FREQ:SPAN is in Hz and SWE:TIME is in seconds.

The other value that is adjusted is either FREQ:CENT or FREQ:STAR, depending on which
of the two values was last set. The value last set remains fixed while the other is adjusted to
make the following formula true:

FREQ:SPAN=(FREQ:CENT-FREQ:STAR)x2
All values must be in Hz.

You can either use numbers or one of two nonnumeric parameters to set the value of
SWE:TIME. If you use numbers, SWE:TIME is set to the closest allowable record length
that is greater than or equal to the number sent. The nonnumeric parameters are:

¢ UP - increases SWE:TIME to the next largest allowable value
* DOWN - decreases SWE:TIME to the next smallest allowable value

The query returns the current record length. The unit for the returned value is seconds.

7-204

Command Reference

SYSTem subsystem

Description:

Commands in this subsystem give you access to a number of miscellaneous
analyzer functions.

SYST.ADDRess[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ourpur 711;"syst:addr 11"
OUTPUT 711;"SYSTEM:ADDR 20"
OUTPUT 711;"SYST:ADDR?"

Command Syntax: SYSTem:ADDRess<sp> <value>
<value>:=an integer from 0 through 30 (NRf format)

Query Syntax: SYSTem:ADDRess?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set the analyzer’s HP-IB address. When a controller sends
commands to the analyzer via the HP-IB, they must be sent to the address you specify with
this command.

NOTE The analyzer's address does not change until SYST:ADDR has been processed by
the command parser.

You can either use numbers or one of two nonnumeric parameters to set the value of
SYST:ADDR. The nonnumeric parameters are:

» UP - increases the current value of SYST:ADDR by one
* DOWN - decreases the current value of SYST:ADDR by one

NOTE The address you set with this command will be saved to nonvolatile memory only if
you issue the SYST:SAVE command.

The query returns the HP-IB address that must be used for sending commands to
the analyzer.

7-205

Command Reference

SYSTBEEPer|[?]

command/query

Example Statements: ourpur 711;"SYST:BEEP OFF"
OUTPUT 711;"SYSTEM:BEEPER 1"
QUTPUT 711;"Syst:Beep?”

Command Syntax: SYSTem:BEEPer<sp>{OFF|ON |01}
Query Syntax: SYSTem:BEEPer?
Returned Format; {0[1}<L¥><"~END>

Description:
This command enables and disables the analyzer’s beeper.

The query returns 0 if the beeper is disabled, 1 if it is enabled.

7-206

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

SYST.DATE[?]

Command Reference

command/query

Power-up state;

Example Statements: ourepur 711;"Syst:bDate 1988,1,1"
OUTPUT 711;"system:date 1989,07,14"
OUTPUT 711;"SYST:DATE?"

Command Syntax: SYSTem:DATE <sp> <year>,<month>,<day>

<year>:=an integer from 1987 to 9999
<month>::=an integer from 1 through 12

<day>:;=an integer from 1 through 31

Query Syntax: SYSTem:DATE?

Returned Format: <year>,<month>,<day><LF>< ~END>

All values are returned in NR1 format.

Description:

Overlapped: no

Delayed resuit: no

Pass control required: no
saved in nonvolatile memory

Use this command to reset the date portion of the analyzer’s clock. The date is saved in

nonvolatile memory when you send the SYST:SAVE command.

NOTE The clock does not continue to run when the analyzer is turned off. When you turn
the analyzer off and back on, the time and date saved in nonvolatile memory are

recalled to initialize the clock.

The query returns the current date according to the analyzer’s clock.

7-207

Command Rseference

SYST.DTIMe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memaory

Example Statements: ovrpur 711;"Syst:Dtim 1988,12,24,02,30,45"
OUTPUT 711;"System:Dtime 2001,1,4,214,45,57"
QUTPUT 711;"syst:dtim?”

Command Syntax: SYSTem:DTIMe<sp > <year>,<month>,<day>,<hour>,
<minute >,<second >

<year>::=an integer from 1987 to 9999
<month>::=an integer from 1 through 12
<day>::=an integer from 1 through 31
<hour >::=an integer from 0 through 23
<minute>::=an integer from 0 through 59

<second >::=an integer from 0 through 59

Query Syntax: SYSTem:DTIMe?

Returned Format: <year>,<month>,<day>, <hour>,<minute>, <second><LF>< ~ END>

All values are returned in NR1 format.

Description:

Use this command to reset both the date and time portions of the analyzer’s clock. The date
and time are saved in nonvolatile memory when you send the SYST:SAVE command.

NOTE The clock does not continue to run when the analyzer is turned off. When you tum
the analyzer off and back on, the time and date saved in nonvolatile memory are
recalfed to initialize the clock.

The query returns the current date and time according to the analyzer’s clock.

SYST:-DUMP selector

Description:

This command only selects the SYST:DUMP subsystem. Sending SYST:DUMP alone
does nothing.

7-208

Command Reference

SYST.DUMP:PLOTter[?] command/query

Cverlapped: yes

Delfayed result: no

Pass control required: yes only for command
Power-up state: not applicable

Example Statements: oureur 711;"sysT:pumMp:PLOT 4"
OUTPUT 711;"System:Dump:Plotter 6"
OUTPUT 711;"Syst:Dump:Plot?"

Command Syntax: SYSTem:DUMP:PLOTter <sp>[<value>]
<value>::=an integer from 0 through 30 (NRf format)

Query Syntax: SYSTem:DUMP:PLOTter?
Returned Format: see description
Description:

Use this command to plot everything that appears on the analyzer’s screen except the
softkey labels.

The value you send with this command specifies the plotter’s HP-IB address. If you don’t
specify an address, the value in PLOT:ADDR will be used.

When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the plot operation. When
the operation is completed, the analyzer must pass control back. For more information on
passing control, see Chapter 2, “Behavior in an HP-IB System.”

When you send the query, the analyzer dumps its screen contents to the controller using the
HP-GL format.

7-209

Command Reference

SYST.DUMP:PRINter[?] command/query

Overlapped: yes

Delayed result: no

Pass controlf required: yes only for command
Power-up state: not applicable

Example Statements: ourpur 711;“syst:dump:prin 3"
OUTPUT 711;"SYSTem:DUMP:PRINter 7"
OUTPUT 711;"SYST:DUMP:PRINZ?"

Command Syntax: SYSTem:DUMP:PRINter <gp > <value>]

<value>::=an integer from 0 through 30 (NRf format)

Query Syntax: SYSTem:DUMP:PRINter?
Returned Format: see description
Description:

Use this command to print everything that appears on the analyzer’s screen except the
softkey labels.

The value you send with this command specifies the printer’s HP-IB address. If you don’t
specify an address, the value in PRIN:ADDR will be used.

When this command is executed, the active controller on the HP-IB must temporarily pass
control to the analyzer. This allows the analyzer to directly control the print operation.
When the operation is completed, the analyzer must pass control back. For more
information on passing control, see Chapter 2, ““Behavior in an HP-IB System.”

When you send the query, the analyzer dumps its screen contents to the controller using the
P raster dump format.

7210

Command Reference

SYST.ERRor? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0,™

Example Statement: ourpur 711;"sysT:ERR?"
Query Syntax: SYSTem:ERRor?

Returned Format: <error_number >"<error_name>;<message>"<LF>< ~END>

<error_number>::=an integer (NR1 format)
<error_name>:=name associated with error number (see Appendix D)
<message>::=message explaining why error was generated

The <error_name> and <message>> are returned as a series of
ASCII characters.

Description:
This query returns the contents of the analyzer’s error queue.
One error is returned in response to each query. Errors are returned until the error queue is

empty, with the most recent error being returned last. When the queue is empty, the error
number will be 0.

The query returns up to 255 characters. If an error exceeds this limit, it is truncated to 255

characters. The limit includes the error number, the quotes, and the characters within
the quotes.

7-211

Command Refarence

SYST:FLOG? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state; #0

Example Statement: ourpur 711;"syst:Flog?”
Query Syntax: SYSTem:FLOG?

Returned Format: #OM{ <fault><LF>}.. . <~END>

<fault>::= <fault_number>,<count>,"<description>"

The length of <fault> never exceeds 83 characters (including quotes
and spaces).

<fault_number>:=an integer (NR1 format)

This number specifies the type of fault. It does not represent the fault’s order in the fault log.
<count>:=an integer (NR1 format)

<description>::=a description of the fault

The description is returned as a series of ASCII characters.

Description:
This query returns the contents of the analyzer’s fault log.

The contents are returned starting with the first line of the fault log and ending with the
last. Line-feed characters separate each line.

SYST:FLOG:CLEar command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: outpur 711;"Syst:Flog:Cle”
OUTPUT 711;"System:¥log:Clear”

Command Syntax: SYSTem:FLOG:CLEar

Description:
Use this command to clear the fault log.

7-212

Command Reference

SYST.FLOG:ENTRy selector

Description:

This command only selects the SYST:FLOG:ENTR subsystem. Sending SYST:FLOG:ENTR
alone does nothing.

SYST-FLOG:ENTR:DESCription command

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTrur 711;"Syst:FLOG:ENTR:DESC 10"
ouUTPUT 711;"System:Flog:Entry:Description 7"

Command Syntax: SYSTem:FLOG:ENTRy:DESCription<sp> <line_number >
<line_number>::=any integer x, wherex = 1

Description:

This command expands the specified line of the fault log. A more detailed description of the
line will be displayed on the analyzer’s screen.

The fault log must be displayed before you send this command. Use the SCR:CONT FLOG
command to display the fault log.

7-213

Command Reference

SYST:HEADer[?] command/query

Overlapped: no
Delayed result: no

Pass control reguired: no
Power-up state: 0

Example Statements: ourpur 711;"syst:head on”
OUTPUT 711;"SYSTEM:HEADER 0"
OUTPUT 711;"SYST:HBEAD?"

Command Syntax: SYSTem:HEADer<sp>{OFF|ON|0[1}

Query Syntax: SYSTem:HEADer?
Returned Format;: {0]1}<LF><"~END>
Description:

This command allows you to indicate whether or not query responses should be preceded by
a header.

A header essentially echoes the query you sent before returning the requested information.
For example, if you send the query Sour:Freq:Mode? while the source output mode is
random noise, the possible responses are:

+ SOUR:FREQ:MODE<sp>RAND<LF>< ~END> (with SYST:HEAD ON)
* RAND<LF><~END> (with SYST:HEAD OFF)

The header is just the query you sent, with a space replacing the question mark.

The SYST:HEAD query returns 0 if headers will not be returned. It returns SYST:HEAD 1
if headers will be returned.

7-214

SYST-MEMory?

Command Reference

query

Example Statement: ourpur 711;“syst:mem?”
Query Syntax: SYSTem:MEMory?

Returned Format: <value><LF><~END>

<value>::=an integer (NR1 format)

Description:

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: instrument dependent

The response to this query tells you how much total RAM (random access memory) the
analyzer contains. It does not tell you how much memory is available. The value is returned

in bytes.

7-215

Command Reference

SYST:-SAVE command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state; not applicable

Examples statement: ourpur 711;"system:save”
Command Syntax: SYSTem:SAVE

Description:

This command allows you save, in nonvolatile memory, the values last sent with selected
HP-1B eommands. The commands are:

*ESE MMEM:MSI:VOL
*PCB PLOT:ADDR
*PSC PRIN:ADDR
*SRE SYST-ADDR
MMEM:LOAD:APPL:AUTO SYST:DATE
MMEM:MSI SYST:DTIM
MMEM:MSI:ADDR SYST.TIME

MMEM:MSLUNIT

Also saved is a flag that indicates whether the analyzer is currently configured as the HP-IB
system controller or as an addressable-only HP-IB device. All of the listed commands have
two things in common:

* *RST does not change the values last sent with these commands.

* The values last saved with SYST:SAVE are recalled when you turn the
analyzer on.

NOTE The analyzer uses an EEPROM chip for nonvolatile memory. After you have
changed the state of an EEPROM about 10,000 times, it may no longer be able
retain its settings when you turn the analyzer off. For this reason, it is best if you do
not repeatedly send the SYST:SAVE command.

7-216

Command Reference

SYST:SERial? query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: instrument dependent

Example Statement: ourpur 711;"sysT:SER?"
Query Syntax: SYSTem:SERial?

Returned Format: <value> <LF>< ~END>

<value>::=10 ASCII characters

Description:
This query returns the serial number of the analyzer.

7-217

Command Reference

SYST.SET[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: ourpur 711;"SYST:SET <block data>"
OUTPUT 711;"SY¥STem:SET <block data>"
OUTPUT 711;"SYST:SET?"

Command Syntax: SYSTem:SET<sp><block data>

<block data> takes one of two forms, depending on whether you are
sending ASClI-encoded or binary-encoded data.

When you are sending ASCII-encoded data (SYST:SET:FORM ASC):
<block_data>:=#0{<line><LF>}. . <~ END>
<line>:=data on a particular line of the record
<line><LF > is repeated until all lines have been sent.
When you are sending binary-encoded data (SYST:SET:FORM BIN):
<block_data>:=#<byte><length bytes>{<data_byte>}..
<byte>::=one ASCli-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<data_byte>::=one byte of the record’s data

<data_byte> is repeated until the number of bytes specified in
<length_bytes> has been sent.

Query Syntax: SYSTem:SET?
Returned Format: <block_data>
Description:

Use this command to transfer a complete instrument state from the controller to the
analyzer via the HP-IB. The complete instrument state is described in Chapter 4,
“Transferring Data.”

The query transfers a complete instrument state from the analyzer to the controller.

7-218

Command Reference

SYST:SET:FORM|[?] command/query

Overlapped: no
Delayed result: no

Pass controt required: no
Power-up state: ASC

Examples statements: ocurpur 711;"Syst:Set:Form Asc"
oQUTPUT 711;"system:set:form bin"
OQUTPUT 711;"SYST:SET:FORM?"

Command Syntax: SYSTem:SET:FORM <sp> {ASCii | BINary}

Query Syntax: SYSTem:SET:FORM?
Returned Format: {ASC|BIN}<LF><~END>
Description:

An instrument state can be ASCII-encoded or binary-encoded when it is transferred between
the analyzer and a controller. This command lets you specify the type of encoding to be used
for the transfer.

The query returns ASC or BIN, depending on the option specified.

7-219

Command Reference

SYST.TIME[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ourpur 711;"SYST:TIME 07,35,21"
QUTPUT 711;"System:Time 8,17,4"
OUTPUT 711;"Syst:Time?"

Command Syntax: SYSTem:TIME <sp> <hour >, <minute>, <second >

<hour>:;=an integer from 0 through 23
<minute>:=an integer from 0 through 59

<second>::=an integer from 0 through 59

Query Syntax: SYSTem:TIME?

Returned Format: <hour >, <minute>,<gecond > <LF>< ~END>
All values are returned in NR1 format.

Description:

Use this command to reset the time portion of the analyzer’s clock. The time is saved in
nonvolatile memory when you send the SYST:SAVE command.

NOTE The clock does not continue to run when the analyzer is turned off. 'When you turn
the analyzer off and back on, the time and date saved in nonvolatile memory are
recalled to initialize the clock.

The query returns the current time according to the analyzer’s clock.

7-220

Test—
Window

Command Reference

TEST subsystem

Description:

Most of the commands in this subsystem are used to invoke service tests. Since these tests
should be used only by qualified service personnel, the commands are not described here.
See the HP 35660A Service Manual for descriptions.

There are four commands in the subsystem that allow you to run the long and short
confidence tests and to determine whether the tests passed or failed.

TEST:LCONfidence command

Overlapped: yes

Delayed result: no

Pass control required: no
Power-up state: not appficable

Example Statement: ourtpur 711;"TEST:LCON"
Command Syntax: TEST:LCONfidence

Description:
Use this command to start the long confidence test.

The long confidence test is actually a series of individual tests that check various analyzer
functions. Results of the individual tests are reported to the analyzer’s test log. The overall
result of the long confidence test is available over the HP-IB via the TEST:LCON:RES query.

If the long confidence test fails, contact a qualified service person.

TEST:LCON:RESult? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ouTpuT 711;"Test:Lcon:Res?”

Query Syntax: TEST:LCONfidence:RESult?
Returned Format: {0]1}<1¥F><~END>
Description:

This query tells you whether or not the analyzer passed the last long confidence test. The
query returns 0 if the analyzer failed, 1 if it passed.

If the long confidence test fails, contact a qualified service person.

7-221

Command Reference

TEST:-RESult? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statement: ouTPUT 711;"test:result?”

Query Syntax: TEST:RESult?
Returned Format: {0{1}<LF><"~END>
Description:

This query tells you whether or not the analyzer passed the last self-test. The query returns
0 if the analyzer failed, 1 if it passed.

NOTE The response to this query may not accurately reflect the resulis of the long
corflidence test. Use the TEST:LCON:RES query to return the results of that test.

If any self-test fails, contact a qualified service person.

TEST:SHORt command

Overlapped: ves

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpur 711;"TEST:SHORT"
Command Syntax: TEST:SHORt

Description:
Use this command to start the short confidence test.

The short confidence test causes the analyzer to self-calibrate, and then compare the
calibration results to specified limits. If the results are within the specified limits, the
analyzer passes the quick confidence test. The result of the quick confidence test is reported
to the analyzer’s test log, but is also available over the HP-IB via the TEST:RES query.

If the short confidence test fails, contact a qualified service person.

7-222

Command Reference

TRACe subsystem

Description:
This subsystem has two main purposes:
« It allows you to specify which measurement results will appear in each of the
two displays
» It provides access to the raw measurement data (data that has not been
transformed into the current display coordinates)

The following diagram shows you the difference between data available in the TRAC
subsystem and the DISP subsystem:
SRR —

Math Coordinate — i
Measuremant [T "t . e ! :> Display
T Operatiens — Transformation

- .) |
(lLogariihmic
Magnitude,
Phase.efc.!

TRACDATA DISF:DATA
compiex or real always redi

Figure 7-3. Flow of Measurement Data

After measurement data is coliected, any specified math operations are performed. Data is
then transformed into the specified coordinate system and sent to the display. TRAC:DATA
provides access to the raw measurement data after math operations have been performed.
This data can be either complex or real. DISP:DATA provides access to the displayed data,
after the coordinate transformation. This data is always real.

NOTE Both TRAC:DATA and DISP:DATA allow you to take measurement data out of the
analyzer. However, only TRAC:DATA allows you to put measurement data back
into the analyzer.

With a few exceptions, trace commands must be directed to a trace in one of the two displays:
A or B. The trace in display A is called trace A; the trace in display B is called trace B. To
specify a trace, insert one of the following items between TRACE or TRAC and the rest of
the command:

¢ :A—asin TRAC:A:RES FRES

¢ :B-asin TRACE:B:DTABLE:DATA?
¢« 1-asin TRACE1:TITLE "MyTrace’

* 2-asin TRAC2:HEAD:XINC?

Using :A or 1 directs the command to trace A. Using :B or 2 directs the command to trace B.
If you don’t explicitly specify one of the traces, the command is directed to trace A.

7-223

Command Reference

TRAC:DATA[?] command/query

Qverlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: ourpur 711;"Trac:B:Data?”

Command Syntax: TRACe[<spec>1:DATA<sp><block data>
<gpec>u="":A"|:B|1|2

<block_data> takes one of four forms. The form it takes for a particular transfer

depends on:

* Whether the data is real or complex, and
* Whether the data is ASCII-encoded or binary-encoded

When data is real (TRAC:HEAD:YPO 1) and is ASCII-encoded (TRAC:HEAD:AFOR ASC):
<block _data>::={<point>,}..<point n><LF><"~END>

<point>::=the y-axis values for the 1% through n'® x-axis points (specify n with the
TRAC:HEAD:POIN command)
Send y-axis values using the NRf format.

When data is complex (TRAC:HEAD:YPO 2) and is ASCIT-encoded:
<block_data>::={<point>,}...<point n><LF><"~END>

<point>:=<real y>,<imag y>
<real_y>::=the real part of y-axis values for the 1* through n™® x-axis points
<imag y>:=the imaginary part of y-axis values for the 1% through n'® x-axis points
Send both real and imaginary y-axis values using the NRf format.

When data is real and is binary-encoded (TRAC:HEAD:AFOR FP32 or TRAC:HEAD:
AFOR ¥P64):

<block_data>:=# <byte> <length_bytes>{<point>}...
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow

<point>::=the y-axis values for the 1* through n'® x-axis points (specify n with the
TRAC:HEAD:POIN command)

1f TRAC:HEAD:AF'OR FP32 is specified, y-axis values must be encoded as 32-bit binary
floating point numbers. If TRAC:HEAD:AFOR FP64 is specified, y-axis values must be
encoded as 64-bit binary floating point numbers.

7-224

Command Reference

When data is complex and is binary-encoded:
<block_data>::=#<byte><length_bytes>{<point>}...

<byte> and <length_bytes> have the same meaning as when data is real
and binary-encoded.

<point>:=<real y> <imag y>
<real y>:=the real part of y-axis values for the 1%t through n"™ x-axis points
<imag y>:=the imaginary part of y-axis values for the 1% through n'® x-axis points

If TRAC:HEAD:AFOR FP32 is specified, y-axis values must be encoded as 32-bit binary
floating point numbers. If TRAC:HEAD:AFOR FP64 is specified, y-axis values must be
encoded as 64-bit binary floating point numbers.

Query Syntax: TRACe[<spec>]:DATA?
Returned Format: <block_data>
Description:

This command lets you load a block of data into the specified trace.

Data is sent to the analyzer as a series of points. You can send as few as 3 and as many as
512 points if the data is in the frequency domain. You can send as few as 3 and as many as
1024 points if the data is in the time domain. When you send fewer than 512 points of
frequency data, the points you send are used as the first points in the block and the
remaining points are given a value of 0. The same thing is true when you send fewer than
512 points of complex time data or fewer than 1024 points of real time data.

The analyzer always displays 401 points of frequency-domain data. When you send a block
of frequency data, the last 111 points are not displayed. When you send a block of zoomed

frequency data (TRAC:HEAD:XOR = 0), the last 56 points are actually lower in frequency

than XOR.

NOTE Send 512 complex points to the analyzer if you plan to manipulate the data with the
analyzer's waveform math capabilities.

For a block of baseband frequency data, the imaginary part of the 0 Hz bin actually contains
the real part of the 513th bin. The analyzer uses this value when it performs an inverse FFT
on the block.

There are two things you must do before you send a block of data to the analyzer with
this command:

* Set upthe trace that will receive the data so that it is domain-compatible
(frequency or time) with the data you plan to send. This is done with the
TRAC:RES command

¢ Use commands in the TRAC:HEAD subsystem to characterize the data you plan
to send

7-225

Command Reference

The following commands are used to characterize a block of data points:

» TRAC:HEAD:AFOR - indicates whether the data is ASCII-encoded or
binary-encoded

« TRAC:HEAD:POIN - indicates how many data points will be sent
« TRAC:HEAD:NAME - specifies a name for the data

e« TRAC:HEAD:XINC - specifies the x-axis increment between data points (must
be in Hz for frequency-domain traces, seconds for time-domain traces)

* TRAC:HEAD:XOR - specifies the x-axis value of the first data point (must be in
Hz for frequency-domain traces, seconds for time-domain traces)

» TRAC:HEAD:XPO - ignored because the value must always be 0
» TRAC:HEAD:YINC - ignored when TRAC:HEAD:YPO is not 0
o TRAC:HEAD:YOR - ignored when TRAC:HEAD:YPO is not 0

« TRAC:HEAD:YPO - specifies the number of y-axis values to be sent with each
data point (must be 1 or 2: 1 when data is real, 2 when data is complex)

Except for TRAC:HEAD:AFOR, all of the preceding commands have two special properties:

* The analyzer retains the values sent with these commands, but does not use
them until you send a block of data points with the TRAC:DATA command

* You will not be able to query the value last sent with these commands. This is
because the query forms of the commands always return the current values of
the specified trace

For example, assume that you have sent TRAC:A:HEAD:NAME "My trace’, but have not yet
sent TRAC:A:DATA. Also assume that the currently displayed trace A data is named
Spectrum Chan 1. In this case, the response to TRAC:A:HEAD:NAME? will be "Spectrum
Chan 1". However, when you do send TRAC:A:DATA followed by a block of data points, the
data will be displayed in trace A and will be given the name My trace. In this case, the
response to TRAC:A:HEAD:NAME? will be "My _trace".

The TRAC:DATA query returns the specified trace as a block of data points.

7-226

Command Heference

TRAC:DATA:SET[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: ourpur 711"rRAC:B:SET?"

Command Syntax: TRACe[<spec>]:DATA:SET <sp> <block_data>
<spec>u=":A" [:B|1]|2
<block_data> takes one of two forms depending on whether you are sending ASCIl-encoded
or binary-encoded data. When you are sending ASCII-encoded data (TRAC:HEAD:
AFOR ASC):
<block data>:=#0{<line><LF>}..<~END>

<line>::=data on a particular line of the record
{<line><1LF>} is repeated until all lines have been sent.

When you are sending binary-encoded data (TRAC:HEAD:AFOR FP32 or
TRAC:HEAD:AFOR FP64):

<block_data>:=# <byte> <length _bytes>{<data byte>}...
<byte>:=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASClI-encoded bytes that specify the number of data bytes to follow
<data_byte>::=one byte of the record’s data

<data_byte> is repeated until the number of bytes specified in
<length bytes> has been sent.

Query Syntax: TRACe[<spec>]:DATA:SET?
Returned Format: <block_data>
Description:

Use this command to transfer a trace file from the controller to the analyzer via the HP-IB.
A trace file is described in Chapter 4, “Transferring Data.”

The query transfers a complete measurement result from the analyzer to the controller.

7-227

Command Reference

TRAC:HEADer selector

Description:

This command only selects the TRAC:HEAD subsystem. Commands in this subsystem are
used to define characteristics of the data you will send with the TRAC:DATA command.
Queries in this subsystem are used to determine characteristics of the data returned by the
TRAC:DATA query. Sending TRAC:HEAD alone does nothing.

TRAC:HEAD:AFORmat[?] command/query

Cverlapped: no
Deiayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ourpuT 711;"Trac:B:Head:Afor ASC"
CUTPUT 711;"trace2:header:aformat FP64"
OUTPUT 711;"TRAC:HEAD:AFOR?"

Command Syntax: TRACe] <spec>]:HEADer: AFORmat <sp>{ASCii | FP32|FP64}
<gpec>u=":A7 |[:B}1]|2

Query Syntax: TRACe[<spec>]:HEADer:AFORmat?
Returned Format: {ASC|FP32|FP64} <LF>< "~ END>
Description:

Trace data can either be ASCIl-encoded or binary-encoded when it is transferred between
the analyzer and an external controller. Such transfers occur when you use TRAC:DATA or
TRAC:DATA:SET. This command lets you specify how the trace data should be encoded.

NOTE Data encoding must be the same for both traces at any given time. So
regardiess of the trace you specify when you send this command, enceding for
both is changed.

When ASC is selected, data is sent as a geries of y-axis values separated by commas. The
values are ASCll-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a series
of y-axis values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of y-axis values
within a definite length block, However, the values are encoded as 64-bit binary floating
point numbers.

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-228

Command Reference

TRAC:HEAD:NAME[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "Spectrum Chan 1* (display A)
Time Chan 1 (display B)

Example Statements: ourpur 711;"Trac:Head:Name "TRACE DATA""
ouTPUT 711; "Trace:B:Header:Name YTRACEL™"
QUTPUT 711;"trac:a:head:name?"

Command Syntax: TRACe[<spec>]:HEADer:NAME <sp> <trace_name>
<gpec>:=":A~[:B|1]|2
<trace_name>::=0 to 30 printable ASCII characters.

Query Syntax: TRACe[<spec>]:HEADer: NAME?
Returned Format: "<trace name>"<LF>< ~END>
Description:

This command specifies a name for the data you will send with the TRAC:DATA command.
The name will appear near the lower-left corner of the specified trace after you send a block
of data points. To change the name of the trace currently displayed, you must use the
TRAC:TITL command.

The query returns the current name of the specified trace. It does not return the last value
you sent with the TRAC:HEAD:NAME command. See TRAC:DATA for more information.

7-229

Command Reference

TRAC:HEAD:POINts[?] command/query

Overlapped: no

Delayed result: no

Pass control required; no
Power-up state: 512 (display A)
1024 {display B)

Example Statements: ourpur 711;"TRAC2:HEAD:POIN 512"
oUTPUT 711;"Tracel:Header:Points 1024"
QUTPUT 711;"Trac:a:Head:Poin?”

Command Syntax: TRACe[<spec>]:HEADer:POINts<sp> <value>
<spec>:=":A7 |:B|1|2
<value>::=an integer from 3 through 512 for all frequency-domain displays

an integer from 3 through 512 for time-domain displays containing
complex data

an integer from 3 through 1024 for time-domain displays containing real data

All values should be sent using the NRf format.

Query Syntax: TRACe[<spec>]:HEADer:POINts?

Returned Format; <value>»<LF><~END>
<value>:=an integer (NR1 format)

Description:

Use this command to indicate how many data points you will send to the specified trace with
the TRAC:DATA command.

You can send a different number of data points than you have specified with this command.
The analyzer will accept the points if the total number of points is within the specified range
for <value>. Using the TRAC:HEAD:POIN command simply allows you to confirm that the
total number of data points you will send is within the specified range.

The response to this query tells you how many data points will be returned from the
specified trace in response to the TRAC:DATA query. It does not tell you the value last sent
with the TRAC:HEAD:POIN command. See TRAC:DATA for more information.

7-230

Command Referenca

TRAC:HEAD:PREamble? query

Example Statement:

Query Syntax:
<spec>::

Returned Format:

<points>::

<x_per_point>::

<x_origin>:

<x_increment>::

<y_per_point>::
<y origin>:

<y_increment>::

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

QUTPUT 711;"trac:b:head:pre?”
QUTPUT 711; "TRACEZ2:HEADER:PREAMBLE?"

TRACe[<spec>]:HEADer:PREamble?
=":A"|:B|1|2

<points>,<x per point>,<x origin>,<x_ increment>,<y_per pcint>,
<y_otrigin>,<y_increment><LF>< " END>

=number of discrete points on the trace’s x-axis (same as returned with
TRAC:HEAD:POIN?)

=number of x-axis values per point (same as returned with
TRAC:HEAD:XP(Q?)

=x-axis value of the first displayed point (same as returned with
TRAC.HEAD:XOR?)

=increment between x-axis points (same as returned with
TRAC:HEAD:XINC?)

=number of y-axis values per point (same as returned with
TRAC:HEAD:YPO?)

=y-axis value of the lowest point on the specified trace (same as returned with
TRAC:HEAD:YOR?)

=optimum y-axis value per division {same as returned with
TRAC:HEAD:YINC?)

<points>, <x_per point>, and <y_per_point> are integers (NR1 format). All other values
are decimal numbers (NR2 or NR3 format).

Description:

This query returns seven pieces of information separated by commas. The information is
useful for setting up an array to receive trace data (returned from TRAC:DATA?).

NOTE As the Returned Format indicates, each piece of information can be returned
separately in response to its own query.

The <points>, <x_per_point>, and <y_per_point> values are used together to tell you how
many values you must read after sending the TRAC:DATA query. The formula is:

of values to read = <points> X(<x_per point+<y per point>)

7-231

Command Refarence

The analyzer does not return x-axis values for each data point. Instead, it provides
<x_origin> and <x_increment> values so you can assign an x-axis value to each returned
point. <x_origin> is the x-axis value for the first point. Add <x increment> to the first
point’s x-axis value to get the value of the second point. Add <x_increment> to the second
point’s x-axis value to get the value of the third point and so on.

The values returned in <y_origin> and <y_increment> should be ignored when the value of
<y points> is something other than 0 (zero).

TRAC:HEAD:XINCrement[?] command/query

Overlapped: no

Delayed resuit; no

Pass control required: no
Power-up state: 256 (display A)
3.81E-6(display B)

Example Statements: ourrur 711;"TRAC2:HEAD:XINC 100"
OUTPUT 711;"TRACE:A:HEADER:XTNCREMENT 125"
OUTPUT 711;"Trac:B:Head:Xinc?"

Command Syntax: TRACe[<spec>]:HEADer XINCrement <sp> <value >
<spec>u=":A7 [:B]1]|2
<value>:=a decimal number (NRf format)
Must be in Hz for frequency-domain traces, seconds for time domain traces.

Query Syntax: TRACe[<spec>]:HEADer:XINCrement?
Returned Format: <value><LF>< ~END>
Description:

Use this command to specify the x-axis inerement between the data points you will send with
the TRAC:DATA command.

The analyzer uses TRAC:HEAD:XINC and TRAC:HEAD:XOR together to assign x-axis
values to the data points you send with the TRAC:DATA command. It uses
TRAC:HEAD:XOR for the x-axis value of the first point. It adds TRAC:HEAD:XINC to the
first point’s x-axis value to get the value of the second point. It adds TRAC:HEAD:XINC to
the second point’s x-axis value to get the value of the third point and so on.

Use TRAC:HEAD:XUN? to determine the unit that will be assumed for the value you send.

The response to this query tells you the current x-axis increment between points on the
specified trace. It does not tell you the value last sent with the TRAC:HEAD:XINC
command. See TRAC:DATA for more information.

7-232

Command Reference

TRAC:HEAD:XNAMe? query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "Frequency* (display A)
*Time" (display B)

Example Statement: ourpur 711;"Trac:B:Head:Xnam?"
OUTPUT 711;"tracel:header:xname?”

Query Syntax: TRACe[<spec>]:HEADer XNAMe?
<spec>u= A7 {:B|1]|2

Returned Format: "{Frequency|Time}"<LF >< ~END>

Description:

This query returns the name of the specified trace’s x-axis. The name tells you whether the
displayed data is in the frequency or the time domain.

7-233

Command Reference

TRAC:HEAD:XORigin{?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTpur 711;"Tracz:Head:Xor 10"
OUTPUT 711;"Trace:B:Header:Xorigin 250"
CUTPUT 711;"tracl:head:xor?”

Command Syntax: TRACe[<spec>]:HEADer:XORigin <sp> <value>
<spec>u= A~ |:B|1]2

<value>::=a decimal number (NRf format)

Query Syntax: TRACe[<spec>]-HEADer:XORigin?
Returned Format: <value><LF><~END>
Description:

Use this command to specify the x-axis value of the first displayed data point you will send
with the TRAC:DATA command,

The analyzer uses TRAC:HEAD:XOR and TRAC:HEAD:XINC together to assign x-axis
values to the data points you send with the TRAC:DATA command. It uses
TRAC:HEAD:XOR for the x-axis value of the first point. It adds TRAC:HEAD:XINC to the
first point’s x-axis value to get the value of the second point. It adds TRAC:HEAD:XINC to
the second point’s x-axis value to get the value of the third point and so on.

Use TRAC:HEAD:XUN? to determine the unit that will be assumed for the value you send.
The response to this query tells you the current x-axis value of the first point on the specified

trace. It does not tell you the value last sent with the TRAC:HEAD:XOR command. See
TRAC:DATA for more information.

7-234

TRAC:HEAD:XPOints[?]

Command Reference

command/query

Example Statement: ourrur 711;"Trac2:Head:Xpo?"

Command Syntax: TRACe[<spec>]:HEADer:XPQints<sp> <value>
<gpec>:=":A~|:B[1]|2
<value>::=an integer (NRf format)

Query Syntax: TRACe[<spec>]:HEADer:XPOints?
Returned Format: 0<LF><"~END>
Description:

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: O

Any value you send with this command is ignored. The analyzer always assumes that the
value of TRAC:HEAD:XPO is 0. This means that data points sent with the TRAC:DATA
command can not contain any x-axis values. Instead, x-axis values will be calculated using

the values you sent with the TRAC:HEAD:XINC and TRAC:HEAD:XOR commands.

The TRAC:HEAD:XPO query always returns 0.

7-235

Command Reference

TRAC:HEAD:XUNits? query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: "HZ" (display A)
"8 (display B)

Example Statement: ourpuT 711;"trac:b:head:xun?"

Query Syntax: TRACe[<spec>]:HEADer:XUNits?
<gpec>:=""A7 [:B|1]|2

Returned Format: "{HZ|8}'<LF>< ~END>

Description:

This query tells you what units apply to the TRAC:HEAD:XINC and
TRAC:HEAD:XOR values.

7-236

Command Reference

TRAC:HEAD:YINCrement{?] command/query

Overlapped: no
Delayed resuit: no

Pass control required: no
Power-up state: variable

Example Statement: ourtpuT 711;"Tracl:Head:Yinc?"

Command Syntax: TRACe[<spec>]:HEADer:YINCrement <sp> <value>
<spec>:u=":A7|:B|1}|2
<value>::=a decimal number (NRf format)

Query Syntax: TRACe[<spec>]:HEADer:YINCrement?
Returned Format: <value><LF>< ~END>
Description:

Any value you send with this command is ignored. The analyzer can only use the value you
send with this command if the value of TRAC:HEAD:YPO is 0. Since the only allowable
values of TRAC:HEAD:YPO are 1 and 2, TRAC:HEAD:YINC can never be used.

This query returns the optimum y-axis value per division for the specified trace. The value
returned is the result of the following calculation:

(Ymax — Ymin)/8
Where:
Ymax = the y-axis value of the highest point on the trace
Ymin = the y-axis value of the lowest point on the trace

The value is returned in the current y-axis units.

7-237

Command Reference

TRAC:HEAD:YNAMe?

query

Example Statement: ourpur 711;"Trac:Head:vnam?"
OUTPUT 711;"tracel:header:yname?”

Query Syntax: TRACe[<spec>]1HEADer:YNAMe?
<spec>u=":A" |:B|1|2

Returned Format: {"}<LF>< ~END>

Description:
This query returns the null string.

7-238

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: ™

Command Reference

TRAC:HEAD:YORIigin|?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state; variable

Example Statement: ourpur 711;"Trac:A:Head:Yor?"

Command Syntax: TRACe[<spec>]:HEADer:YORIigin <sp> < value>
<spec>;=":A" |:B|1|2

<value>: =a decimal number (NRf format)

Query Syntax: TRACe[<spec>]:HEADer:YORigin?

Returned Format: <value><LF>< ~END>
<value>::=a decimal number (NRf format)

Description:

Any value you send with this command is ignored. The analyzer can only use the value you
send with this command if the value of TRAC:HEAD:YPO is 0. Since the only allowable
values of TRAC:HEAD:YPO are 1 and 2, TRAC:HEAD:YOR can never be used.

The query returns the y-axis value of the lowest point on specified trace.

7-239

Command Reference

TRAC:HEAD:YPOints[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 2 (display A)
1 (display B)

Example Statements: ourpuT 711;"TRAC1:HEAD:YPO 1%
OUTPUT 711;“Trace2:Header:Ypoints 27
OUTPUT 711;"Trac:B:Head:Ypo?"

Command Syntax: TRACe[<gpec>]:HEADer: YPQints<sp> <value>
<spec>:=":A" |:B{1]2
<value>::=1 if the data is real
2 if the data is complex

Query Syntax: TRACe[<spec>):HEADer:YPOints?
Returned Fermat: {1|2}<LF><"END>

Description:

The TRAC:DATA command lets you send a block of data points to the analyzer. Each point
will consist of either one or two y-axis values, depending on whether the data is real or
complex. Before sending a block of points, you must use this command (TRAC:HEAD:YPO;}
to tell the analyzer how many y-axis values will be sent with each point.

The response to this query tells you how many y-axis values will be returned from the
specified trace in response to the TRAC:DATA query. It does not tell you the value last sent
with the TRAC:HEAD:YPO command. See TRAC:DATA for more information.

7-240

Command Reference

TRAC:HEAD:YUNits? query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: "V*

Example Statement: outrur 711;"trac:a:head:yun?"

Query Syntax: TRACe[<spec>]:HEADer:YUNits?
<spec>:=":A~ |:B[1]2

Returned Format: "(<unit>1"<LF>< "~ END>
<unit>1:=V|V2|V2/HZ

Description:

This query tells you what unit applies to the y-axis values returned from the
TRAC:DATA query.

NOTE Not listed in Returned Format are the many special units that can result from math
operations or the application of engineering units. However, such units are also
valid responses.

TRAC:DATA returns the raw measurement data from which display data is derived. The
unit used for the raw data is dependent on the selected measurement results (TRAC:RES),
but not the selected display units (DISP:Y:SCAL:UNIT). As a result, the unit for
TRAC:DATA values may not be the same as the unit shown on the current display.

7-241

Command Reference

TRAC:RESuIit[?]

command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: SPEC1 (display A)
TIME1 (display B)

Example Statements: ourpur 711;“TRAC1:RES COH”

OUTPUT 711;"TRACE:B:RESULT F5"
OUTPUT 711;"Trac2:Res?”

Command Syntax: TRACe[<spec>]:RESult<sp><meas_data>

<gpec>u=":A" |:Bl1|2

<meas_data>::=COHerence | C5Pectrum | F <num > | FRESponse | K<num >

IPSD{1|2}SPECtrum{1|2}| TIME{1]2}
<num>::=1|2|3{4|5

Query Syntax: TRACe[<spec>]:RESult?

Returned Format: <meas_data><LF>< ~END>

<meas_data>

Description:

Use this command to select one of the measurement results, math functions or math
constants. Your selection is displayed in the specified trace. Special restrictions on the
options you can select follow.

7-242

Coherence (TRAC:RES COH) is only available when the analyzer is in the
two-channel mode (CONF:TYPE NETW) and the measurement is averaged
(AVER:STAT ON). It is never available when the average type is peak hold
(AVER:TYPE PEAK).

The cross spectrum (TRAC:RES CSP) is only available when the analyzer is in
the two-channel mode. It is never available when the average type is peak hold.

The math functions (TRAC:RES F<num>) are only available if they have
already been defined and if all of the data they require is currently available to
the analyzer. You can define math functions using the USER:EXPR command.

Frequency response (TRAC:RES FRES) is only available when the analyzer is in
the two-channel mode. It is never available when the average type is peak hold,

The math constants (TRAC:RES K<num>) are available at all times. They are
defined using the USER:VAR commands.

Power spectral density for channel 1 (TRAC:RES PSD1) is available at all times.
Power spectral density for channel 2 (TRAC:RES PSD2) is only available when
the analyzer is in the two-channel mode.

:=COH|CSP|F<num> |FRES |K<num>|PSD{1|2} |SPEC{1|2} | TIME{1|2}

Command Reference

* The spectrum for channel 1 (TRAC:RES SPEC1) is available at all times. The
spectrum for channel 2 (TRAC:RES SPECZ2) is only available when the analyzer
is in the two-channel mode. The spectra are linear spectra if averaging is off or if
vector averaging is on. They are power spectra if rms averaging is on.

¢ The time record for channel 1 (TRAC:RES TIME1) is available at all times.
The time record for channel 2 (TRAC:RES TIME2) is only available when the
analyzer is in the two-channel mode. Time records are uncalibrated.

The query response tells you which result, function or constant is currently displayed.

7-243

Command Reference

TRAC:TiTLe[?] command/query

Overiapped: no
Delayed result: no

Pass control required: no
Power-up state: ™

Example Statements: ourpur 711;"Tracl:Titl “"“TEST1"""
OUTPUT 711;"trace:b:title ""TRACE MAG"""
OUTPUT 711;"TRAC2:TITL?"

Command Syntax: TRACe{ <spec>]:TITLe<sp>"<name>"
<gpec>u=":A” |:B{1|2
<name>::=0 to 30 printable ASCII characters.

Query Syntax: TRACel <spec>]:TITLe?
Returned Format: "<name>"<LF>< "~ END>
Description:

This command allows you to enter a user-specified name for the displayed data. The name
you enter will appear near the lower-left of the specified trace.

The analyzer assigns a default name to the various measurement results you can display.
These default names are related to the option selected with the TRAC:RES command. When
you send a name with the TRAC:TITL command, that name replaces the default name. If
you later decide that you prefer the default name to the name you have assigned, just send
this command with the null string (TRAC:TITL ™). The default name will reappear in the
lower-left corner of the trace.

The query returns the current user-specified name for the specified trace.

7-244

Command Reference

TRIGger subsystem

Description:

This subsystem contains commands related to the analyzer’s triggering functions. See the
ARM subsystem for commands related to trigger arming.

TRIG:DELay[?] command/query

Cverlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Zxample Statements: ocurpPuT 711;"Trig:bDeli -7Ms®
OUTPUT 711;"Trigger:Delay2 15"
QUTPUT 711;"trig:del2?”

Command Syntax: TRIGger:DELay[~ 1~ |2)<sp> < value>[<unit>]

<value>::=a decimal number (NRf format)
<unit>:=""8" |MS|US

Query Syntax: TRIGger:DELay[~ 1~ |2]?
Returned Format: <value><LF><"~END>
Description:

This command allows you to enter a time delay between two points: the point at which the
analyzer is triggered and the point at which the specified channel starts collecting data. This
delay is also referred to as trigger delay.

If you want the channel to start collecting data before the trigger point, you must specify a
pre-trigger delay. This is done by sending a negative value with the command. Ifyou want
the channel to start collecting data after the trigger point, you must specify a post-trigger
delay. This is done by sending a positive value with the command.

The maximum pre-trigger delay is 8 time records. The maximum post-trigger delay is §191
seconds. Also, there can be no more than 7 time records difference between the delay
specified for channel 1 and the delay specified for channel 2. You can determine the current
time record length with the SWE:TIME query.

7-245

Command Reference

You can either use numbers or one of two nonnumeric parameters to set the value of
TRIG:DEL. The nonnumeric parameters are:

¢ UP - increases the current value of TRIG:DEL
o DOWN - decreases the current value of TRIG:DEL

The amount of increase or decrease is equal to the increment between x-axis points for the
current time record.

The query returns the delay currently selected for the specified channel. The value is
returned in seconds.

TRIG[:IMMediate] command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"TRIG"
OUTPUT 711;"Trigger:Immediate"

Command Syntax: TRIGger[:TMMediate]

Description:
This command triggers the analyzer if the following two things are true:
* The trigger source must be the HP-IB (TRIG:SOUR BUS)

+ The analyzer must be ready to trigger. (Bit 2 of the Device Status condition
register must be set.)

» TRIG:IMM has the same effect as the *TRG command

7-246

Command Reference

TRIG:LEVel[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"trig:lev .25"
OUTPUT 711;“"TRIGGER:LEVEL 25PCT"
OUTPUT 711;"TRIG:LEV?"

Command Syntax: TRIGger:LEVel <sp>{{<percent >PCT} | <fraction>

<percent>:=an integer from -100 to 100
<fraction>::=a decimal number from -1 to 1 in increments of 0.01

Both <percent> and <fraction> are sent in NRf format.

Query Syntax: TRIGger:LEVel?

Returned Format: <fraction><LF>< ~END>

<fraction>:=a decimal number in NR1 or NR2 format

Description:

Use this command to specify the level at which an input signal can cause the analyzer to
trigger. The value you send with this command is only used if the trigger source is one of the
analyzer’s two input channels (TRIG:SOUR INT1 or TRIG:SOUR INT?2).

You can specify the trigger level either as a percentage or as a fraction of the trigger
channel’s current input range. (Use the INP:RANG command to determine the eurrent
range.) Sending a positive value causes the analyzer to trigger on the positive portion of the
signal. Sending a negative value causes the analyzer to trigger on the negative portion of
the signal.

You can either send a number or one of two nonnumeric parameters to set the trigger level.
If you send a number, it is rounded to the nearest allowable percentage (an integer between
-100 and 100). The nonnumeric parameters are:

* UP - increases the current trigger level by 1%
¢ DOWN - decreases the current trigger level by 1%

The query returns the trigger level currently specified. The value is returned in the
fractional form.

7-247

Command Reference

TRIG:SLOPe[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state; POS

Example Statements: ourrur 711;"TRIG:SLOP POS”
OUTPUT 711;"TRIGGER:SLOPE NEGATIVE”
OUTPUT 711;"Trig:Slop?”

Command Syntax: TRIGger:SLOPe<sp>{POSitive| NEGative}
Query Syntax: TRIGger:SLOPe?
Returned Format: {POS|NEG}<LF><"~END>

Description:

The analyzer can trigger either when a trigger signal’s slope is positive or when it is
negative. Use this command to specify the slope on which the analyzer can trigger.

The trigger slope setting is only used for the following three trigger signals:

e The channel 1 input signal (TRIG:SOUR INT1)
* The channel 2 input signal (TRIG:SOUR INTZ2)
« The external trigger signal (TRIG:SOUR EXT)

The query returns the slope currently specified.

7-248

Command Reference

TRIG:SOURce[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: FREE

Example Statements: oureur 711;"Trig:Sour Sour"
OUTPUT 711;"trigger:source internall”
QUTPUT 711;"TRIG:SOUR?"

Command Syntax: TRIGger:SOURce<sp> <option>
<option>::={BUS |FREErun|EXTernal |INTernal{l|2} | SOURce}

Query Syntax: TRIGger:SOURce?
Returned Format: {BUS|FREE|EXT|INT{1|2}{SOUR}<LF><"~END>

Description:

The analyzer can be triggered from a number of different sources. This command allows you
to specify the source of the trigger signal.

NOTE The analyzer can only be triggered if it is ready to trigger. Bit 2 of the Device Status
condition register is set to 1 when the analyzer is ready to trigger.

A description of the options available for this command follows:

* BUS - The HP-IB acts as the trigger source. When this option is selected, the
analyzer can be triggered with either the TRIG:IMM command or the
*TRG command.

» EXTernal — The analyzer’s external trigger BNC (on the rear panel) acts as the
trigger source. With this option selected, the analyzer can be triggered when the
signal at that BNC makes either a low-to-high or a high-to-low TTL transition.
The setting of TRIG:SLOP determines which transition will trigger the analyzer.

* FREErun - The analyzer requires no trigger signal. It triggers itself as soon as
it is armed.

* INTernal{1|2} — The specified input channel acts as the trigger source. With
this option selected, the analyzer can be triggered when the input signal matches
the settings of TRIG:LEV and TRIG:SLOP.

* SOURce - The analyzer’s signal source acts as the trigger source, With this
option selected, the analyzer can be triggered when a synchronization signal is
generated by the source board.

The query returns the currently specified trigger source.

7-249

Command Reference

7-250

Command Reference

USER subsystem

Description:

Commands in this subsystem allow you to define the analyzer’s math functions and
constants. If HP Instrument BASIC is installed in the analyzer, additional commands are
added to this subsystem. For information on these commands, see Appendix D in the

HP Instrument BASIC Programming Reference.

USER:EXPRession[?] command/query

Cverlapped: no
Delayed result: yes

Pass control required: no
Power-up state: ()

Example Statements: ourpur 711;"User:Expr Fl,(SPECL*FFT(TIME2))"
OUTPUT 711;"User:Expr F5,((‘MY_FILE'+K2Z)*JOM)"
OUTPUT 711; user:expr? F4"

Command Syntax: USER:EXPRession<sp>F<num>,(<expr>)
<num>:=1|2|3|4|5
<expr>:=one or more of the following elements in a mathematical equation;

SPEC1, SPEC2, PSD1, PSD2, TIMEL, TIMEZ, FRES, COH, CSE, F1.F5,
K1:K5, '<filename>" JOM(, CONJ(, MAG(, REAL(, IMAG(, SQRTY(, FFT{,
IFFT(, and (+%

<filename>::=the name of a file containing data you want to include in the expression

Query Syntax USER:EXPRession? <sp>F <num>
Returned Format: {(<expr>)<LF>< ~END:>
Description:

Use this command to define any of the analyzer’s five math functions.

The elements CONJ, MAG, REAL, IMAG, SQRT, FFT, and IFFT are all function operators.
Use the following syntax to specify what data they are to operate on:

operator(data)

For example, if you want function 1 to take the inverse-FFT of the channel 1 frequency
response, send the command USER:EXPR F1,(JFFT(FRES)). See the HP 35660A Getting
Started Guide for more information on defining functions.

The query returns the current definition of the specified function.

7-251

Command Reference

USER:VARiable selector

Description:

This command only selects the USER:VAR subsystem. Sending USER:VAR alone
does nothing.

The four commands in this subsystem can be thought of as two pairs of commands. Each
pair allows you to define the specified constant. USER:VAR:IMAG and USER:VAR:REAL
form one pair, while USER:VAR:MAGN and USER:VAR:PHAS form the other.

When you change the value of one member of a pair, the value of the other member of that
pair remains constant. However, the value of both members of the other pair are changed so
that all of the following formulas are true:

* imag=sin(phase)xmagn
¢ real=cos(phase)xmagn
* magn=vy (imag2+rea12)

¢ phase=arctan(imag/real)

USER:VAR:IMAGinary[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"USER:VAR:IMAG K1,2"
OUTPUT 711;"User:Variable:Imaginary K3,1.41421"
OUTPUT 711;"User:Var:Imag? K4"

Command Syntax: USER:VARiable:IMAGinary<sp>K<num>,<value>
<num>:=1|2|3}4|56
<value>::=any x, where —340.28E+36<x <340.28E+36 (NRf format)

Query Syntax: USER:VARiable:IMAGinary?<sp>K<num>
Returned Format: <value> <LF><~END>
Description:

Use this command to define the imaginary part of the specified math constant.

This command and USER:VAR:REAL are used together to completely define a constant.
Once you have defined the real and imaginary parts of a constant, you can determine its
magnitude and phase with the USER:VAR:MAGN and USER:VAR:PHAS queries. See
USER:VAR for more information.

The query returns the current value of the specified constant’s imaginary part.

7-252

Command Reference

USER:VAR:MAGNitude[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 1

Example Statements: ouvrrur 711;"user:var:magn K5,5"
OUTPUT 711; "USER:VARIABLE:MAGNITUDE K2,7.43"
OUTPUT 711;"USER:VAR:MAGN? K3"
Command Syntax: USER:VARiable:MAGNitude<sp>K<num>,<value>
<num>:=1|2{3]|4|5
<value>::=a decimal number from 0 to 340.28E36 (NRf format)

Query Syntax: USER:VARiable:MAGNitude? <sp>K<num>
Returned Format: <value><LF><"~END>

Description:
Use this command to define the magnitude of the specified math constant.

This command and USER:VAR:PHAS are used together to completely define a constant,
Once you have defined the magnitude and phase of a constant, you can determine the values
of its real and imaginary parts with the USER:VAR:REAL and USER:VAR:IMAG commands.
See USER:VAR for more information.

The query returns the current magnitude of the specified constant.

7-253

Command Reference

USER:VAR:PHASe[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: O

Example Statements: ourpur 711;"USER:VAR:PHAS X1,45DEG"
OUTPUT 711;"USER:VARIABLE:PHASE K4,0.52RAD"
QUTPUT 711;"USER:VAR:PHAS? K5°

Command Syntax: USER:VARiable:PHASe<sp>K<num>,<value><unit>
<num>:;=1{2|3|415
<value>::=a decimal number from —180 to 180 (when <unit> is DEG)
a decimal number from —3.1416 to 3.1416 (when <unit> is RAD)

The value is always sent in NRf format.
<unit>::={DEGrees| RADians}

Query Syntax: USER:VARiable:PHASe? <sp>K<num>
Returned Format: <value><LF><~END>

Description:
Use this command to define the phase of the specified math constant.

This command and USER:VAR:MAGN are used together to completely define a constant.

Once you have defined the magnitude and phase of a constant, you can determine the values
of its real and imaginary parts with the USER:VAR:REAL and USER:VAR:IMAG commands.
See USER:VAR for more information.

The query returns the current phase of the specified constant. The value is always returned
in the phase unit last used.

7-254

Command Reference

USER:VAR:REAL|[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 1

Example Statements: ourpuT 711;"User:vVar:Real K3,6.7"
OUTPUT 711;"user:variable:real K1,0.70711"
OUTPUT 711;"USER:VAR:REAL? K57

Command Syntax: USER:VARiable:REAL<sp>K<num>,<sp> <value>
<num>:={1|2|3|4|5}
<value>::=any x, where .—340.28E4+36 < x < 340.28E 436 (NRf format)

Query Syntax: USER:VARiable:REAL?<sp>K<num >

<num > is defined in Command Syntax.

Returned Format: <value><LF>< ~END>

<value>::=decimal number in NRf format.
Description:
Use this command to define the real part of the specified math constant.

This command and USER:VAR:IMAG are used together to completely define a constant.
Once you have defined the real and imaginary parts of a constant, you can determine its
magnitude and phase with the USER:VAR:MAGN and USER:VAR:PHAS queries. See
USER:VAR for more information.

The query returns the current value of the specified constant’s real part.

7-255

Command Reference

7-256

Command Reference

WINDow subsystem

Description:
Commands in this subsystem are used to define and select windowing functions.

WIND:CONStant selector

Description:

This command just selects the WIND:CONS subsystem. Sending WIND:CONS alone
does nothing.

7-257

Command Reference

WIND:CONS:EXPonential[?] command/query

Qverlapped: no
Delayed result; no

Pass control required: no
Power-up state: 9999

Example Statements: ourpur 711;"WIND2:CONS:EXP .007"
OUTPUT 711;"Windowl:Constant:Exponential 3.5M8"
OUTPUT 711;"Wind:Cons:Exp?"

Command Syntax: WINDow[~ 1~ |2]:CONStant:EXPonential <sp> <value>[<unit>]

<value>:=a decimal number from 100E-9 through 9.999E6 (when the unit is seconds)
Send the value using the NRf format.
<unit>:;="57 |MS|US

Query Syntax: WINDow[~ 1~ |2}1:CONStant:EXPonential?
Returned Format: <value><LF>< ~END>
Description:

Use this command to specify a rate of decay for the specified channel’s Exponential window.

The value of an Exponential window is 1.0 at the beginning of a time record. The value then
decays at an exponential rate determined by the following formula:

o(-tTC)
Where:
t= time record length (SWE:TIME)
TC=time constant entered with WIND:CONS:EXP

The value you send with this command can also determine the rate of decay for the other
channel’s Force window. See WIND:TYPE for more information.

You can step the current value of this constant up or down by sending WIND:CONS:EXP UP
or WIND:CONS:EXP DOWN.

The query returns the current value of the specified time constant. The value is returned
in seconds.

7-258

Command Reference

WIND:CONS:FORCe|[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 9999

Example Statements: ouTpuT 711;"WIND2:CONS:FORC .007"
OUTPUT 711;"Windowl:Constant:Force 3.5MS"
OUTPUT 711; "Wind:Cons:Forc?"

Command Syntax: WINDow{ ~ 1~ | 2]:CONStant:FORCe<sp> <value>[<unit>]
<value>::=a decimal number from 100E-9 through 9.999E6 (when the unit is seconds)

Values are sent using the NRf format.
<unit>:="5" |MS|US

Query Syntax: WINDow[~ 1~ |2]:CONStant:FORCe?
Returned Format: <value><LF><~END>

Description:

Use this command to indicate how long the specified channel’s Force window should pass the
input signal. See WIND:TYPE for more information.

You can step the current value of this constant up or down by sending WIND:CONS:FORC
UP or WIND:CONS:FORC DOWN.

The query returns the current value specified for this constant. The value is returned
in seconds.

7-259

Command Reference

WIND[:TYPE][?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: FLAT

Example Statementis: oureuT 711;“Wind Flat®
OUTPUT 711;"Window2:Type Exponential”
OUTPUT 711;"windl:type?”

Command Syntax: WINDow([~ 1~ |2][:TYPE]<sp>
{FLATtop|HANNing| UNIForm |FORCe| EXPonential}

Query Syntax: WINDow[~ 1~ |2][: TYPE]?
Returned Format: {FLAT|HANN|UNIF{FORC|EXP}<LF><~END>
Description:

Use this command to select a windowing function (also called a window) for the input data.

A window is a time-domain weighting function that is applied to input signals. It reduces the
negative effects of signals that are not periodic within the time record. For more
information, see the HP 35660A Getting Started Guide.

When you select the Flat Top, Hanning, or Uniform window, the window is applied to both
channels. Only the Force and Exponential windows can be applied to a single channel.
A description of the windows follows:

* EXPonential - Selects the Exponential window. This window decays at an
exponential rate. The rate is determined by the following formula:
(-t/TC)
e

Where:

t=time record length (SWE:TIME)
TC=time constant entered with WIND:CONS:EXP

This window is useful when you are measuring the response of a system that was
excited by an impulse. If the system is lightly damped, you can ensure that the
response decays within the time record by entering a time constant that is less
than or equal to 1/4 the time record length.

7-260

Command Reference

* FLATtop — Selects the Flat Top window. This window has greater amplitude
accuracy, but lower frequency resolution than the Hanning window. It is
especially useful when you are measuring the amplitude of fixed-sine signals.

* FORCe - Selects the Force window. This window passes the input signal for a
fixed amount of time (specified with the WIND:CONS:FORC command). After
that time, the signal is set to its average value for the remainder of the time
record. The Force window is most useful when you are measuring the excitation
force of an impact test.

After the Force window is applied to a channel’s input signal, the signal may also
be attenuated by an amount that decreases exponentially. This is the case only
when the Exponential window is applied to the other channel’s input signal.

The rate of decrease is determined by the setting of WIND:CONS:EXP for that
other channel.

» HANNing - Selects the Hanning window (sometimes called the Hann or Random
window). This window offers greater frequency resolution, but lower amplitude
accuracy than the Flat Top window. It is most useful when you are measuring
random noise signals.

* UNIForm - Selects the Uniform window (sometimes called the Transient
window). This window does not attenuate any portion of the time record, so it is
like using no window at all. The Uniform window should only be selected when
you are analyzing signals that are periodic within the time record. The
analyzer’s periodic chirp is one such signal.

The query indicates which window is currently being applied to the specified input channel.

7-261

Appendix A
Selecting Units

The following tables (Tables A-1 through A-4) show the units available for the y-axis. These
units are specified with the HP-IB commands shown below. See “Command Reference”
(in this manual) for a description of these commands.

* Y-axis start (bottom), stop (top) or center reference:
DISP[~:A~ |:B}1|2][:Y I:SCAL:STAR < sp > < value >{ < units >]
DISP[~:A~ [:B{1|2][:Y 1:SCAL:STOP < sp > < value >[< units >]
DISP[~:A~ |:B|1|2 1[:Y 1:SCAL:CENT < sp > < value >[< units >]

* Y-axig (vertical) units:
DISP[~:A~|:B|1]|2 { :Y I:SCAL:UNIT< sp >{’|"}< units >{"|"}

* Y-axis (vertical) per division:
DISP{ ~:A~ |:B|1|2][:Y :SCAL:DIV< sp > < value >[< units >]

Use Table A-1 to determine the units you may use if you are setting the y-axis start, stop or
center reference or the y-axis units. Use Table A-2 to determine the units you may use if you
are setting the y-axis per division. If you are using engineering units, use Tables A-3 and A-4
instead of Tables A-1 and A-2.

NOTE if you do not specify units, the HP 35660A analyzer uses the default unit shown as
bold type in Tables A-1 through A-4.

A-1

Selecting Units

The units that you may specify depend on the measurement you select and the trace type.
If you do not know the current measurement selection you can send the query:

TRAC] ~:A~ |:B{1|2]:RES?

or select a measurement with:
TRAC[7:A~|'B|1|2:RES< gp > < meas >

where:

< meas >:= {SPEC{1{2}|PSD{1]2} | TIME{1|2} |COHerence | FRESponse
|CSPectrum |F< num > |K< num >}.

< num >:= {1{2]3{4|5}

Likewise, you can query for the trace type with:
DISP[—:A~ [:B|1]2 [;Y J:AXIS?

or set the trace type with:

DISP{ ~:A~ [:B|1{2][:Y :AXIS< sp > < type >
where:

< type > ::= {GDELay|IMAGinary|LINMagnitude |LOGMagnitude| PHASe | REAL}

A2

Table A-1 Normal Units For STAR, STOP, CENT and UNIT

Ssiacting Units

Trace Type: DISP:AXIS?
Measurement LINM REAL
TRAC:RES? LOGM PHAS GDEL IMAG
SPEC{1 |2} v DEG s v
V2 RAD MsH vz
VEMS ugH VRMS
VRMS2 VRMS2
DBM
DBVPK
DBVRMS
PSD{1|2} V/RTHZ DEG V/RTHZ
V2/HZ RAD Mg Vo/HZ
VRMS/RTHZ usH VRMS/RTHZ
VRMS2/HZ VRMS2/HZ
DBVRMS/RTHZ
DBVPK/RTHZ
DBM/HZ
TIME {112} v DEG - v
V2 RAD My
VRMS vt
VRMS2
DBM
DBVPK
DBVRMS
COH no units DEG s no units
DB RAD Mgt
US**
FRES no units DEG 3 no units
DB RAD MgH
US”
csP V2 DEG s V2
VRMS2 RAD MmsH VRMS2
DBVRMS ugH
DBVPK
DBM
F<num > v DEG s .
vz RAD Ms* V2
VAMS usH VRMS
VAMS2 VRAMS2
DEM
DBVPK
DBVRMS
F< num =1 no #nlts* DEG s no units?
K< num =T DB RAD MsH
I

* Use this row when the results of user math function are in Vor V2,
t Use this row when the results of user math function are NOT in Vor V2.

t Uses the units of your math function or consiant,

tt Converts your math units to a form of DB (precedes your math units with DB),
$# NOT valid for the DISP: Y: SCAL: UNITS command,

Salecting Units

* Use this row when the results of user math function are in Vor V2,

Table A-2 Normal Units For DIV

Trace Type: DISP:AXIS?

Measurement REAL
TRAC:RES? LiNM LOGM PHAS GDEL IMAG
SPEC{1 |2} v DB DEG S A"
V2 RAD MS Va2
VRMS us VRMS
VRMS2 VRMS2
PSD{1|2} V/RTHZ DB DEG s V/RTHZ
VRMS/RTHZ RAD MS VRMS/RTHZ
VRMS2/HZ us VRMS2/MZ
Va/HZ V2/HZ
TIME{1 12} v DB DEG - v
vz RAD MV
VRMS uwv
VERMS2
COH no units DB DEG S no units
RAD MS
us
FRES no units [#}:] DEG S no units
RAD MS
us
CsP V2 DB DEG S v2
VRMS2 RAD MS VRMS2
us
F< num =" v D8 DEG s v
vz RAD MS V2
VRMS us VRMS
VYRMS2 VBMS2
F< num >! no units?* DB DEG s no units®
K< num >t RAD MS
us

T Use this row when the resulis of user math function are NOT in V or V2,
¥ Uses the units of your math function or constant.

Selecting Units

Table A-3 Engineering Units For STAR, STOP, CENT and UNIT

Trace Type: DISP:AXIS?
Measurement LINM ! REAL
TRAC:RES? LOGM PHAS GDEL IMAG
SPEC{1|2} EU DEG s EU
EU2 RAD ms? EU2
EURMS ugH EURMS
EUAMS2 EURMS2
DBEUPK
DBEURMS
PSD{1|2} EU/RTHZ DEG s EU/RTHZ
EUZ/HZ RAD msH EU2/HZ
EURMS/RTHZ ust EURMS/RTHZ
EURMS2/HZ EURMS2/HZ
DBEURMS/RTHZ
DBEUPK/RTHZ
TIME{1]2} EU DEG - EU
EUZ RAD MEUH
EURMS gyt
EURMS2
DBEUPK
DBEURMS
COH no units DEG s no units
DB RAD msH
FRES no units DEG s no units
DB RAD msH
CSP no units DEG 5 Ao units
DB RAD Mg
F< num >" EU DEG i s EU
EU2 RAD Y EU2
EURMS Loust EURMS
EURMS2 EURMS2
DBEUPK
DBEURMS
Fe num >' no units? DEG S no units*
K< nom > D't RAD ms*
US“

* Use this row when the resulls of user math function are in Vor V2.
f Use this row when the results of user math finction are NOT in Vor V2.
¥ Uses the units of your math function or constant,
t1 Converts your math uniis to a form of DB (precedes your math units with DB),
1 NOT valid for the DISP: Y- SCAL: UNITS command.

A-5

Selecting Units

* Use this row when the results of user math function are in Vor V2,
T Use this row when the results of user math function are NOT inV or V2,

Table A-4 Engineering Units For DIV

Trace Type: DISP:AXIS?

Measurement REAL
TRAC:RES? LINM LOGM PHAS GDEL IMAG
SPEC{1 |2} EU DB DEG S EU
EU2 RAD MS EU2
EURMS us EURMS
EURMS2 EURMS2
PSD{1 |2} EU/RTHZ DB DEG s EU/RTHZ
EURMS/RTHZ RAD MS EURMS/RTHZ
EURMS2/HZ us EURMS2/HZ
EUZ2/HZ EU2/HZ
TIME{1 |2} EU DB DEG - EU
EU2 RAD MEU
EURMS UEU
ELJRAMS2
CCH no uhits pB DEG S no units
RAD MS
us
FRES ne units™ DB DEG s no units’t
RAD MS
us
CsP no unlts* DB DEG s no units®
RAD MS
us
F< num >~ EU DB DEG s EU
EU2 RAD MS ElrR2
EURMS us EURMS
EURMS2 EURMS2
Fe num >' no units? DB DEG s no unis*
K< num »7 RAD MS
us

1 Uses the units of your math function or constant.

11 Uses the units EU, + EU,
It Uses the units EU, % EU,

A-6

Appendix B

Cross-Reference from Front-Panel Keys
to HP-IB Commands

Introduction

This section lists analyzer hardkeys and softkeys and their equivalent HP-IB commands.
Keys that do not have an equivalent HP-IB command are included to make the list of keys
complete. The numbers beside each softkey indicate the position of the softkey on the
screen — the top softkey is number 1 and the bottom softkey is number 10.

You can also determine the equivalent HP-1B command for any key sequence by turning
mnemonic echo on. With mnemonic echo on, the analyzer displays the equivalent
HP-IB command for each front panel key sequence. To turn mnemonic echo on, press the
following keys:
<Local/HP-IB>
[HP-IB UTILITIES]
[MNEMONIC ECHQ]

B-1

Cross-Refarence from Front-Panet Keys to HP-IB Commands

Measurement Group

FRONT PANEL KEY

Average

1) AVERAGE ON/OFF

2) NUMBER AVERAGES

3} RMS AVERAGE

4) BRMS EXPO AVERAGE

5) VECTOR AVERAGE

6) VECT EXPO AVERAGE

7} CONTINUOS PEAK HOLD
8) FAST AVG ON/OFF

9) UPDATE RATE

10} OVERLAP%

Frequency

1) SPAN

2) START

3) CENTER

4) ZERO START

5) FULL SPAN

6) STEP

7) RECORD LENGTH

Input

1) CHANNEL 1 RANGE
2) CHANNEL 1 AUTORANGE
3) CHANNEL 1 SETUP

1) FLOAT/GND

2) AG/DC

3) UNITS
1) VOLTS
2) ENG UNITS
3) ENG UNIT VALUE
4) ENG UNIT LASEL
10) RETURN

10) RETURN

4) CHANNEL 2 RANGE
5) CHANNEL 2 AUTORANGE

B-2

HP-IB COMMAND

AVER[:STAT] ON | OFF
AVER.COUN <NRf>
AVER:TYPE RMS;WEIG STAB
AVER:TYPE RMS;WEIG EXP
AVER:TYPE VECT,WEIG STAB
AVER:TYPE VECT,WEIG EXP
AVER:TYPE PEAK
AVER:DISP:RATE:STAT ON | OFF
AVER:DISP:RATE <NRf>
AVER:OVER <NRf> [PCT]

FREQ:SPAN <NRf>
FREQ:STAR <NRf>
FREQ:CENT <NRf>
FREQ:STAR O
FREQ:SPAN;FULL
FREQ:CENT:STEP <NRf>
SWE:TIME <NRf>

INP1:RANG <NRf=>
INP1:RANG:AUTO ON

INP1:LOW FLO| GRO
INP1:COUP AC |DC

INP1:UNIT VOLT

INP1:UNIT EU
INPT:UNITEU:MULT <NRf>
INPT:UNIT.EU:NAME <string>

INP2:RANG <NRf>
INP2:RANG:AUTO ON

FRONT PANEL KEY
6) CHANNEL 2 SETUP

1) FLOAT/GND
2) AG/DC
3) UNITS

) VOLTS
) ENG UNITS
} ENG UNIT VALUE
} ENG UNIT LABEL
10} RETURN

10) RETURN
8) dBm REF IMPEDANCE

’
2
3
4

Meas Type

1) 1 CHANNEL 102.4 KHZ
2) 2 CHANNEL 51.2 KHZ

Pause/Cont

Source

1) SOURCE ON/OFF
2) LEVEL
3) RANDOM
4) PERIODIC CHIRP
5) FIXED SINE

6) SINE FREQ ENTRY

Start

Trigger

1) CONTINUOS TRIGGER
2) EXTERNAL TRIGGER
3) CHANNEL 1 TRIGGER
4) CHANNEL 2 TRIGGER
5) SOURCE TRIGGER

6) HP-IB TRIGGER

7) AUTOMATIC ARM

8) MANUAL ARM

9) TRIGGER SET UP

} LEVEL

) SLOPE POS/NEG

) CHANNEL 1 DELAY

) CHANNEL 2 DELAY
10y RETURN

10) ARM

]
2
3
4

Cross-Reference from Front-Panel Keys to HP-IB Commands

HP-IB COMMAND

INP2:LOW FLO|GRO
INP2:COUP AC|DC

INP2:UNIT VOLT

INP2;UNIT EU
INP2:UNIT.EEU:MULT <NRf>
INP2:UNIT.EU:NAME <string>

INP:IMP <NRf>

CONF.TYPE SPEC
CONF.TYPE NETW

INIT:STAT PAUS | RUN

SOUR:STAT ON | OFF
SOUR:AMPL[:LEV] <NRf>
SOUR:FREQ:MODE RAND
SOUR:FREQ:MODE PCH
SOUR:FREQ:MODE CW
SOUR:FREQ[:CW] <NRf>

INIT:STAT STAR

TRIG:SOUR FREE
TRIG:SOUR EXT
TRIG:SOUR INT1
TRIG:SOUR iINT2
TRIG:SCUR SOUR
TRIG:SOUR BUS
ARM:SOUR FREE
ARM:SOUR HOLD

TRIGLEV <NRf> [PCT]
TRIG:SLOP POS |NEG
TRIG:DELT <NRf>
TRIG.DEL2 <NRf>

ARM:IMM]

B-3

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY

Window

B4

1) HANNING

2) FLAT TOP

3) UNIFORM

4) FORCE EXPO

6) FORCE CHANNEL 1

7) EXPO CHANNEL 1
9) FORGE CHANNEL 2

10) EXPO CHANNEL 2

HP-IB COMMAND

WIND[:TYPE] HANN
WIND[TYPE] FLAT
WIND[:TYPE] UNIF

WIND1 FORG:WIND2 EXP
WIND1[:TYPE] FORC
WIND1:CONS:FORC <NRf>
WIND1[:TYPE] EXP
WIND1:CONS:EXP <NRi>
WIND2[:TYPE] FORC
WIND2:CONS:FORC <NRf>
WIND2[: TYPE] EXP
WIND2:CONS:EXP <NRf>

Display Group

Cross-Referance from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY
Active Trace

Format

1) SINGLE

2) UPPER/ LOWER

3) FRONT/ BACK

4) SETUP STATE

5) TRCE GRID ON/OFF
6) TRACE TITLE

9) DATA LBL ON/OFF
10) DISP BLNK ON/OFF

Math

1} DEFINE F1

2) DEFINE F2

3) DEFINE F3

4) DEFINE F4

5) DEFINEF5

6} DEFINE K1

) DEFINE REAL PART
) DEFINE IMAG PART
) DEFINE MAGNITUDE
) DEFINE PHASE

10) RETURN

7} DEFINE K2

1) DEFINE REAL PART
2) DEFINE IMAG PART
3) DEFINE MAGNITUDE
4) DEFINE PHASE

10) RETURN

8) DEFINE K3

1) DEFINE REAL PART
2) DEFINE IMAG PART
3) DEFINE MAGNITUDE
4)
10

1
2
3
4

DEFINE PHASE
) RETURN

HP-IB COMMAND
SCR:ACT A|B

SCR:FORM SING

SCR:FORM ULOW

SCR:FORM FBAC

SCR:CONT STAT
DISP[:A|:B|1|2]:GRAT ON|OFF
TRAC[:A|:B|1|2):TITL <string>
SCR:ANN ON | OFF

SCR[:STAT] OFF[ON

USER:EXPR F1, <expression>
USER:EXPR F2, <expression>
USER:EXPR F3, <expression>
USER:EXPR F4, <axpression>
USER:EXPR F5, <expression>

USER:VAR:REAL K1, <NRf>
USER:VAR:IMAG K1, <NRf>
USER:VAR:MAGN K1, <NRf>

USER:VAR:PHAS K1, <NRf> [RAD|DEG]

USER:VAR:REAL K2, <NRf>
USER:VAR:IMAG K2, <NRf>
USER:VAR:MAGN K2, <NRf>

USER:VAR:PHAS K2, <NRf> {RAD|DEG]

USER:VAR:REAL K3, <NRf>
USER:VAR:IMAG K3, <NRf>
USER:VAR:MAGN K3, <NRf>
USER:VAR:PHAS K3, <NRf> [RAD|DEG]

B-5

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY

9) DEFINE K4

1} DEFINE REAL PART
2) DEFINE IMAG PART
3) DEFINE MAGNITUDE
4) DEFNE PHASE

10) RETURN

10) DEFINE K5

1) DEFINE REAL PART
2) DEFINE IMAG PART
3) DEFINE MAGNITUDE
4) DEFINE PHASE

10) RETURN

Meas Data

B-6

1) SPECTRUM CHANNEL 1
2) SPECTRUM CHANNEL 2
3) PSD GHANNEL 1
4) PSD CHANNEL 2
5) TIME CHANNEL 1
6) TIME CHANNEL 2
7) FREQUENCY RESPONSE
8) COHERENGE

9) CROSS SPECTRUM
10) MORE

1) FUNCTION (F1-F5)

1) FUNCTION F1
2) FUNCTION F2
3) FUNCTION F3
4) FUNCTION F4
o) FUNCTION F5
10) RETURN

2) CONSTANT (K1-K5)

1) CONSTANT K1
2) CONSTANT K2
3) CONSTANT K3
4) CONSTANT K4
5) CONSTANT K5
10) RETURN

HP-IB COMMAND

USER:VAR:REAL K4, <NRf>
USER:VAR:IMAG K4, <NRf>
USER.VAR:MAGN K4, <NRf>
USER:VAR:PHAS K4, <NRf> [RAD|DEG]

USER:VAR:REAL K5, <NRf>
USER:VAR:IMAG K5, <NRf>
USER:VAR:MAGN K5, <NRf>
USER:VAR:PHAS K5, <NRf> [RAD|DEG}

TRACL:A|:B| 1] 2:RES SPECH
TRAC{:A|:B|1]2):RES SPEC2
TRACE:A|:B| 1] 2):RES PSD1
TRAC[:A| :B|1]2]:RES PSD2
TRAC[:A|:B|1|2]:RES TIME1
TRAC[:A|:B|1|2):RES TIME2
TRAC[:A|:B| 1| 2]:RES FRES
TRAC[:A|:B|1|2):RES COH
TRAC{:A|:B| 1] 2):RES CSP

TRAC[:A|:8|1|2]:RES F1
TRAC[:A|:B|1|2]:RES F2
TRACL:A|:B]1|2]:RES F3
TRAC[:A|B|1]2]:RES F4
TRAC[:A|:B|1|2]:RES F5

TRAC[:A|:B|1|2]:RES K1
TRAC[:A|B]1|2}:RES K2
TRAC[:A}:B11|2]:RES K3
TRAC[:A|:B|1]2]:RES K4
TRACT:A|:B|1]2):RES K5

FRONT PANEL KEY
3) RECALL TRACE

} RCL FROM 'TRACEY’
) RCL FROM 'TRACE2’
} RCL FROM "TRACE3’
) RCL FROM 'TRACE4'
} RCL FROM '"TRACES'
j RCL FROM "TRACEE'
) RCL FROM 'TRACE7’
) RCL FROM "TRACES'
) DEFINE FILENAME
10) RETURN

10} RETURN

’
2
3
4
5
6
7
8
9

Trace Type

1) LINEAR MAGNITUDE
2) LOG MAGNITUDE

3) PHASE

4) GROUP DELAY

) APERT 5% OF SPAN
) APERT 1% OF SPAN

) APERT 2% OF SPAN

) APERT 4% OF SPAN

) APERT 8% OF SPAN

) APERT 16% OF SPAN
10) RETURN

1
2
3
4
5
6

5) REAL PART
6) IMAGINARY PART

Scale

1) AUTO SCALE

2) TOP REFERENCE

3) CENTER REFERENCE
4) BOTTOM REFERENGE
5) REF LEVEL TRACKING
6) VERTICAL /DIV

7) VERTICAL UNITS

8) X-AXIS LIN/LOG

Cross-Reference from Fron-Panet Keys to HP-1B Commands

HP-IB COMMAND

MMEM:GET|LOAD: TRAC[:A|:B}1}2] "TRACE1"
MMEM:GET | LOAD:TRAC[:A|:B]1]2] "“TRACE2"
MMEM:GET | LOAD:TRAC[:A|:B|1|2] "TRACE3"
MMEM:GET | LOAD:TRAC[;A|:B|1|2] *TRACE4"
MMEM:GET[LOAD:TRAC[:A|:B|1|2] "TRACES"
MMEM:GET}LOAD:TRAC[:A|:B|1|2] "TRACEG"
MMEM:GETILOAD:TRAGC[:A|:B|1|2] "TRACE7"
MMEM:GET{LOAD: TRAC[:A|:B|112] “TRACES"
MMEM:GET|LOAD:TRAC[:A|:B|1]2] “<filename>"

DISP[:A]:B]12):AXIS LINM
DISP[:A]:B]1|2):AXIS LOGM
DISPL:A]:B |1 | 2]:AXiS PHAS
DISP[:A]:B|1|2):AXS GDEL

DISP[:A]:B]1|2]:X:APER 0.5 PCT
DISPL:A|:B{1|2]:X.APER 1 PCT
DISP:A|:B]1|2]X.APER 2 PCT
DISP[:A]:B|1|2]X:APER 4 PCT
DISPL:A|:B|1|2]:X:APER 8 PCT
DISP[:A]:B|1]2]:APER 16 PCT

DISPLA|:B|1]2):AXIS REAL
DISPLA|:B|1]2):AXIS IMAG

DISPL.A|:B|1]2][:Y}:SCALAUTO:SING
DISPL:A|:B|112]{:Y]:SCAL:STOP <NRf>
DISPLA|:B|112][Y].SCAL:CENT <NRf>
DISP[:A|:B|1[2][Y]:SCAL:STAR <NR#>
DISP[:A|:B|1|2][Y].SCAL:REF INP
DISP[:A]:B]1|2][Y]):SCAL:DIV <NRi>
DISPLALB]T2]LY]:SCAL:UNIT <string>
DISP[:A}:B{1|2]X:SPAC LIN|LOG

B-7

Cross-Reference from Front-Panel Keys to HP-IB Commands

Marker Group
FRONT PANEIL KEY
T
|
L
e
Marker
1) MARKER ON/OFF
2) COUPLED ON/OFF
3) XENTRY
4) OFFSET

1) OFFSET ON/OFF

2) OFFSET ZERO

3) REFERENCE X ENTRY
4) REFERENGCEY ENTRY
10) RETURN

5) MARKER TO PEAK

6) NXT RIGHT PEAK

7) NXT LEFT PEAK

8) MARKER TO MINIMUM
9) PEAK TRK ON/CFF

10) SEARCH

1) TARGET
2) LEFT
3) RIGHT
10} RETURN

Marker Fectn

1) OFF
2) HARMONIC

) FNDMNTL FREQ
) DEFINE NUM HARM
) DIVIDE FNDMNTL
) THD

) HARM PWR
) RESULTS ON/OFF
0

y
2
3
4
5
8
10} RETURN

B8

HP-IB COMMAND
MARK[:A|:B|1 |2]:AMAX:RIGH
MARK[:A|:B|1|2];AMAX;LEFT
MARK[:A|:B|1]2]:POIN DOWN
MARK[:A|8|1]2]:POIN UP

MARKEA|:B[1]2][:X]:STAT ON| OFF
MARKE:A |:B|1]2] [X]:AUTO ON| OFF
MARK{:A|:B|1]2][X): <NRf>

MARK[:A|:B|12][:X]:MODE DELT|NORM
MARK{:A|:B|1|2] [X}:DELT-ZERO
MARK[:A|:B|1|2] [X]:DELT <NRf>
MARK[:A]:B|1]2]{X}:DELT-AMPL <NRf>

MARK[:A]:B|1 |21 [:X]:AMAX[:GLOB]
MARK[:A]B[1] 2] [XI:AMAX:RIGH
MARK[:A}:B|1 |2} [X]:AMAX-LEFT
MARK[A | B 1] 2] [X|:AMIN[:GLOB]
MARK[:A| :B|1 2] [X]:AMAX:AUTO ON| OFF

MARKL:A | :B11]2][X]:SEAR:AMPL <NRf>
MARK[A | :B]1]2]{X]:SEAR-LEFT
MARK[:A | :B|112)(X]:SEAR:RIGH

MARK[:A|:B|1]2]:FUNC AOFF

MARK[:A|:B|1]2]:HARM:STAT ON

MARK[:A|:B]1|2]:HARM[:FREQ] <NRf>
MARK[:A|:B|1 | 2] HARM:GOUN <NRf>
MARK[:A}:B|1 | 2]:HARM:FREQ:DIV <NRf>
MARK[A|:B|1|2]:HARM:THD:STAT ON
MARK[:A|:B|1|2]:HARM:POW-STAT ON

MARK[:A | :B|1]2]:HARM:POW-STAT ON | OFF

FRONT PANEL KEY
3) SIDEBAND

) CARRIER FREQ

) SIDEBAND INCREM
) DEFINE NUM SDBND
) RESULTS ON/OFF
10) RETURN

1
2
3
9

4) BAND

1) DEFINE LEFT FREQ
2) DEFINE RGHT FREQ
3) DEFINE GENT FREQ
9) RESULTS ON/OFF
10) RETURN

5 umIT

1) X-START
2) Y-START
3) X-STOP
4) Y-STOP
5) LIMIT UPPER/LOW
6) INSERT SEGMENT
7) DELETE

1) DELETE SEGMENT
4) DELETE ALL
10) RETURN

8) OFFSET

) Y OFFSET ON/OFF
) Y OFFSET VALUE

) X ADJUST ALL SEGS
) Y ADJUST ALL SEGS
10) RETURN

9) LIMIT CONFIG

1) LINES ON/OFF
2) TEST EVAL ON/OFF
3) BEEP ON/OFF

1
2
4
5

Cross-Referance from Front-Panet Keys to HP-1B Commands

HP-IB COMMAND
MARK[:A]:B|1]2}:SID:STAT ON

MARK[:A|:B|1]2]:SID[:FREQ] <NR7>
MARKLA|:B|1]2}:SID:DELT <NRf>
MARK[:A|:B|1]2}:SID:COUN <NRf>
MARK[:A|:B|1]2]:SID:POW:STAT ON| OFF

MARK[:A]:B|1|2]:BAND:STAT ON

MARK[:A|:B|1|2]:BAND:STAR <NRf>
MARK[:A| B[1]2]:BAND:STOP <NRf>
MARK[:A|:B|1 | 2]:BAND:CENT <NRf>
MARK[:A|:B|1|2]:BAND:POW:STAT ON| OFF

DISP[:A|:B[1]2]:LIM:LINE ON|OFF
DISP[A|:B|1|2]:.LIM:STAT ON{OFF
DISPL:A|:B|1]2]:LIM:BEEP ON|OFF

B-9

Cross-Referenca from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY
5) SELECT LIMIT
1) L1 AGTIVE
2) L2 ACTIVE
3) L3 ACTIVE
4) L4 ACTIVE
L5 AGTIVE
L6 AGTIVE
L7 ACTIVE
8) L8 ACTIVE
10) RETURN

6) SELECT SEGMENT
10) RETURN

10) RETURN TBL DOWN
5) DATA TABLE

1) CALC ON/OFF

2) EDITX

3) INSERT X

4) MOVE TO ENTRY NUM
6) DELETE ENTRY

7) DELETE ALL

5
8
7

1) DO DELETE
10) RETURN

10) RETURN TBL DOWN

B-10

HP-IB COMMAND

DISP[:A]:B|1]2]:LIM[:TABL] 1
DISPLA|:B|1|2):LIM[:TABL] 2
DISP[:A|:B|1]2]:LIM[:TABL] 3
DISPL:A|:B|1]2].LIM[.TABL] 4
DISP[:A|:B|1]2]:LIM[:TABL] 5
DISPL:A|:B|1]2]:.LIM[:TABL] 6
DISP[:A|:B[1]2}:LIM[:TABL] 7
DISP[:A|:B|1]2]:LIM[:TABL] 8

MARK[:A|:B|1]2]:DTAB:STAT ON| OFF

System Group

Cross-Reference from Front-Panel Keys to MP-IB Commands

FRONT PANEL KEY
Help

Local/HP-1B

1) SYSTEM CONTROLLR
2) ADDRESSBL ONLY

3) ANALYZER ADDRESS

4) PERIPHERL ADDRESSES

1) DISC ADDRESS

2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS
5) PRINTER ADDRESS
10) RETURN

5) HP-IB UTILITIES

) STATUS ON/OFF
) MNEMONIC OFF

) MNEMONIC ECHO
) HP-1B SCROLL
10) RETURN

10) USER SRQ

) USER SRQ 0
) USER SRQ 1
) USER SRQ 2
) USER SRQ 3
) USER SRQ 4
) USER SRQ 5
)
)
}
0

1
2
3
4

1
2
3
4
5
6
7) USER SRQ 6

8) USER SRQ 7

9) USER SRQ 8

10) USER SRQ 9

Plot/Print
1) PLOT SCREEN
1) ABORT PLOT

2) PLOT TRACE
1) ABORT PLOT

3) PLOT MARKER
1) ABORT PLOT

HP-IB COMMAND

SYST.ADDR <NRf>

MMEM:MSFADDR <NRf>
MMEM:MSIUNIT <NRf>
MMEM:MSEVOL <NRf>
PLOT:ADDR <NRi>
PRIN:ADDR <NRf>

GPiB:LEDS ON|OFF
GPIB:MNEM OFF
GPIB:MNEM ECHO
GPIB:MNEM SCR

STAT.USER:PULS 1
8TAT:.USER:PULS 2
STAT-USER:PULS 4
STAT:.USER:PULS 8
STAT.USER:PULS 16
STAT:USER:PULS 32
STAT.USER:PULS 64
STAT.USER:PULS 128
STAT.USER:PULS 256
STAT.USER:PULS 512

PLOT:DUMP:SCR
PLOT:DUMP:TRAC

PLOT:DUMP:MARK

B-11

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY HP-IB COMMAND

4) DEFINE PLT SPEED

B-12

1) SLOW (5 cm/s)
2) FAST (36 cm/s)
3) USER DEFINED
4) USER ENTRY
10) RETURN

5) DEFINE PLOT PENS

1} DEFAULT PENS
2} TRAGE A PEN NUM
3} TRACGE A LINE TYPE

1) SOLID
2) DOTTED
3) DASHED

4) USER DEFINED
5} USER TYPE ENTRY

10) RETURN

5) TRACE B PEN NUM
6) TRACE B LINE TYPE

1) SOLID
2) DOTTED
3) DASHED

4} USER DEFINED
5) USER TYPE ENTRY

10} RETURN

8) ALPHA PEN NUM
9) GRID PEN NUM
10) RETURN

7) PRINT SCREEN

1) ABORT PRINT

8) PRINT ALPHA

1) ABORT PRINT

9) PERIPHERL ADDRESSES

1) DISC ADDRESS

2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS
5) PRINTER ADDRESS
10) RETURN

PLOT.SPE 5
PLOT:SPE 36
PLOT:SPE <NRf>

PLOT:PEN:INIT
PLOT:PEN:TRAC:A <NRf>

PLOT.LTYP.TRAC:A -4096
PLOT:LTYP:TRAC:A 1
PLOTLTYP:TRAC:A 2
PLOTLTYP.TRAC:A <NRf>

PLOT:PEN:TRAC:B <NRf>

PLOT{TYP:TRAC:B -4096
PLOTLTYP:TRAG:B 1
PLOT:LTYP:TRAC B 2
PLOT:LTYP.TRAC:B <NRf>

PLOT:PEN:ALPH <NRf>
PLOT:PEN:GRID <NRf>

PRIN:DUMP:SCR
PRIN:DUMP:ALPH
MMEM:MSI:ADDR <NRf>
MMEM:MSIUNIT <NRf>

MMEM:MSI:VOL <NRf>
PLOT:ADDR <NRf>

PRIN:ADDR <NRf>

FRONT PANEL KEY

Preset

Save

1) SAVE TRACE

1) INTO FILE 'TRACET
2} INTO FILE 'TRACEZ'
3) INTO FILE 'TRACEY
4) INTG FILE 'TRACE4'
5) INTO FILE 'TRACES’
6) INTO FILE 'TRACES’
7) INTO FILE 'TRAGEY'
8) INTO FILE "TRACES'
9) DEFINE FILENAME
10) RETURN

2) SAVE STATE

1) INTO FILE 'STATEY'
2) INTO FILE 'STATEZ'
3) INTO FILE "STATEY
4) INTO FILE "STATE4
5) INTO FILE 'STATES'
6} INTO FILE 'STATE®’
7) INTO FILE 'STATE?’
8) INTO FILE 'STATES'
9) DEFINE FILENAME
10) RETURN

3) SAVE MATH

1) INTO FILE 'MATH1’
2) INTO FILE 'MATH2"
3) INTO FILE 'MATH3’
4) INTO FILE 'MATH4’
5) INTO FILE 'MATHS’
6) INTO FILE 'MATHS’
7) INTO FILE 'MATH7’
8) INTO FILE 'MATHg'
9) DEFINE FILENAME
10) RETURN

4) SAVE MORE

1) SAVE LIMIT
2) SAVE DATA TABLE
10) RETURN

Cross-Referance from Front-Panel Keys to HP-I1B Commands

HP-IB COMMAND
*RST

MMEM:SAVE | STOR:TRAC[:A|:B | 1]2] "TRACE 1"
MMEM:SAVE | STOR:TRAC[:A} :B|1]2] *TRACE2"
MMEM:SAVE | STOR:TRAC[:A| :B{1]2] *TRACE3"
MMEM:SAVE | STOR:TRAC[:A| :B|1|2] “TRACE4"
MMEM:SAVE | STOR:TRAG[:A[B | 1] 2] *TRACES"
MMEM:SAVE |STOR:TRAC[:A| B |1]2] *TRACES"
MMEM:SAVE |STOR:TRAC[:A| B |1|2] "TRACE7"
MMEM:SAVE |STOR:TRAC[:A| B |1|2] "TRACES"*

MMEM:SAVE |STOR:TRAC[:A|:B|1]2] *<filename>"

MMEM:SAVE | STOR:STAT "STATE1*
MMEM:SAVE | STOR:STAT "STATE2"
MMEM:SAVE | STOR:STAT "STATE3"
MMEM:SAVE | STOR:STAT "STATE4*
MMEM:SAVE | STOR:STAT *STATES"
MMEM:SAVE | STOR.STAT "STATEG
MMEM:SAVE | STOR.STAT "STATE7"
MMEM:SAVE | STOR:STAT *STATES"
MMEM:SAVE | STOR:STAT " <filename >*

MMEM:SAVE | STOR:MATH “MATH1"
MMEM:SAVE | STOR:MATH *MATH2"
MMEM:SAVE | STOR:MATH *MATH3"
MMEM:SAVE | STOR:MATH *MATH4"
MMEM:SAVE | STOR:MATH "MATH5*
MMEM:SAVE | STOR:MATH *MATHG"
MMEM:SAVE | STOR:MATH "MATH7"
MMEM:SAVE | STOR:MATH "MATH8"
MMEM:SAVE | STOR:MATH " < filename >

MMEM:SAVE|STOR.LIM<[imit# >" «filename>"

MMEM:SAVE|STOR:DTABLA[:B}1]2]"< filename>"

B-13

Cross-Reference from Front-Panel Kays to HP-B Commands

FRONT PANEL KEY
6) SAVE SYS CONFIG

1) DO SAVE
10) CANCEL/RETURN

7) FILE UTILITIES

1) RENAME FILE

2) DELETE FILE

3) DELETE ALL FILES
4) PACK FILES

5) RENAME CATALOG
6) COPY DISC

1) SOURCE DISC
2) DESTN DISC

4) START COPY

10) RETURN

7} COPY FILE

1) SOURGE FILENAME
2) DESTN FILENAME
4) START COPY

10) RETURN

8) STORAGE CONFIG

1) INTERNAL RAM DISC

2) INTERNAL DISC

3) EXTERNAL DISC

7) FORMAT ASCI/BIN

8) PERIPHERL ADDRESSES

1) DISC ADDRESS

2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS
5) PRINTER ADDRESS
10) RETURN

g) CATALOG ON/OFF
10) RETURN

8) DISC FUNGTIONS

1) FORMAT OPTION
2) INTRLEAVE FACTOR
4) START FCRMAT

B-14

HP-IB CCMMAND

SYST:SAVE

MMEM:REN" < old filename >""<new filename>"
MMEM:DEL" <filename>"

MMEM:DEL" <msi>*

MMEM:PACK *<msi>"

MMEM:REN" <msi>""<new cat name>"

MMEM:COPY * < source device>" "< destn filename>*

MMEM:-COPY *<source device>" "< destn filename >"

MMEM:MSI “RAM:*
MMEM:MSI *INT:*
MMEM:MS! "EXT:*
MMEM:FORM ASC|BIN

MMEM:MSI:ADDR <NRf>
MMEM:MSLUNIT <NRf>
MMEM:MSI:VOL <NRf>
PLOT:ADDR <NRf>
PRIN:ADDR <NRf>

SCR:CONT DCAT
MMEM:INIT-OPT «<NRf>

MMEM:INIT:INT <NRf>
MMEM:INIT *<msi>"

FRONT PANEL KEY
8) STORAGE CONFIG

) INTERNAL RAM DISC
) INTERNAL DISG

) EXTERNAL DISC

) FORMAT ASCH/BIN

8) PERIPHERL ADDRESSES

1) DISC ADDRESS
2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS
5) PRINTER ADDRESS
10) RETURN

9) CATALOG ON/OFF
10) RETURN

g) CATALOG ON/OFF
10} RETURN

10) RETURN
8) STORAGE CONFIG

y
2
3
7

1) INTERNAL RAM DISC

2) INTERNAL DISC

3) EXTERNAL DISC

7) FORMAT ASCII/BIN

8) PERIPHERL ADDRESSES

1) DISC ADDRESS
2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS
5) PRINTER ADDRESS
10) RETURN

9) CATALOG ON/OFF
10) RETURN

g) CATALOG ON/OFF
10) DISC FUNGTIONS

1) FORMAT OPTION
2) INTRLEAVE FACTOR
4) START FORMAT

Cross-Reference from Front-Pane! Keys to HP-IB Commands

HP-IB COMMAND

MMEM:MSI "RAM:*
MMEM:MS] *INT:*
MMEM:MS! “EXT:*
MMEM:FORM ASC|BIN

MMEM:MSI:ADDR <NRf>
MMEM:MSEUNIT <NRf>
MMEM:MSIVOL <NRf>
PLOT:-ADDR <NRf>
PRIN:ADDR <NRi>

SCR:CONT DCAT

SCR;CONT DCAT

MMEM:MS! *RAM;*
MMEM:MSI "INT*
MMEM:MSI *EXT:"
MMEM:FORM ASC|BiN

MMEM:MSEADDR <NRf>
MMEM:MSi:UNIT <NRf>
MMEM:MSLVOL <NRf>
PLOTADDR <NRt>
PRIN:ADDR <NRf>

SCR:CONT DCAT
SCR:CONT CCAT

MMEM:INIT:OPT <NRf>
MMEM:INIT:INT <NRf>
MMEM:INIT "<msi=>*

B-15

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY
8) STORAGE CONFIG

1) INTERNAL RAM DiSC

2) INTERNAL DISC

3) EXTERNAL DISC

7) FORMAT ASCI/BIN

8) PERIPHERL ADDRESSES

) DISC ADDRESS
) DISC UNIT

) DISC VOLUME
) PLOTTER ADDRESS
) PRINTER ADDRESS
) CATALOG ON/OFF
10} RETURN

1
2
3
4
5
9

9) CATALOG ON/OFF
10} DISC FUNCTIONS

Spcl Fetn

1) SINGLE CAL
2) AUTO CAL ON/OFF
3) CAL OPTIONS

1) CLEAR CAL CONSTANTS
2} CAL TRACE ON/OFF
10) RETURN

4) BEEPER ON/OFF
5) TIME HHMMSS
6) DATE MMDD[YY]
7) FAULT LOG

1) CLEAR FAULT LOG
2) DESCRIBE ENTRY
8) VERSION
10) RETURN

8) MEMORY USAGE
10) RETURN

9) SELF TEST

1) QUICK CONF TEST
2) LONG CONF TEST

1) STARTY
10} ABORT RETURN

3) FUNGTIONL TESTS

B-16

HP-IB COMMAND

MMEM:MSI "RAM:*
MMEM:MSI *INT:*
MMEM:MS1 *EXT:*
MMEM:FORM ASC|BIN

MMEM:MSI:ADDR < NRf>
MMEM:MSI:UNIT <NRf>
MMEM:MSIVOL <NRf>
PLOT:ADDR <NRf>
PRIN:ADDR <NRf>
SCR:CONT DCAT

SCR:GONT DCAT

CAL:SING
CAL:AUTO ON|OFF

CAL:CLE
CAL:TRAC ON|OFF

SYST.BEEP ON | OFF

SYSTTIME <hour>,<min>, <sec>
SYSTDATE <year>, <mon>, <day>
SCR:CONT FLOG

SYSTFLOG.CLE
SCR:CONT FLOG:SYST.FLOG:ENTR:DESC <NRf>
SYST.VERS

SCR:CONT MEM

TEST:SHOR

TEST.LCON
TEST:ABOR

FRONT PANEL KEY
1) CPU ROM/RAM

) CPU
) ROM

) RAM

) INTERRUPT

) MULT FCTN PERIPHERL

) ALL
10) ABORT RETURN

2) DISPLAY

1) TEST PATTERN
10} ABORT RETURN

2) DISPLAY: TEST
10) ABORT RETURN

3) DMA
4) 10

1) KEYBOARD
2) HP-IB

y
2
3
4
5
8

1) HP-IB FUNGC TEST
2) HP-1B CONNECTOR
10) ABORT RETURN

3) INTERNAL DISC

i) DISC CONTROLLR
2) MOTOR

3) RESTORE

4) RANDOM SEEK
5) SEEK SECTOR

6) READ

7) READ/ WRITE

8) READ/ WRITE ALL
g) ALL

10) ABCRT RETURN

Cross-Reference from Front-Pane! Keys to HP-IB Commands

HP-IB COMMAND

TEST.PROC:CPU
TEST:PROC:ROM
TEST.PROC:RAM
TEST.PROC:INT

TEST:PROC:MFP

TEST:PROC:ALL
TEST.ABOR

TEST.DISP:PATT ON
TEST.DISP.PATT OFF

TEST:DISP
TESTABOR

TEST:DMA

TESTIOKEY

TESTIO:DISC:CONT
TEST.I0:DISC:MOT
TEST:I0:DISC:REST
TEST0:DISC:RAND
TESTI0:DISC:SEEK <NRf>
TEST:0:DISC:READ
TEST.I0:DISC:WRIT
TEST.IO:DISC.RW
TESTI0:DISC:ALL
TEST.ABOR

B-17

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PANEL KEY
4) IIC BUS
5) FAST BUS
8) ALL
10) ABORT RETURN

5) MATH COPROCSSR
6) DSP

) TRIGGER

) 10

) DIGITAL FILTER

) FIFO

) BASEBAND

) Z0OM

) DGTL SRCE THRU DSP
) ALL

10) ABORT RETURN

7) SOURCE

1) SOURGE LO

2) SOURCE TO CPY
3) WITHOUT LO

4) WITH LO

8) ALL

10) ABORT RETURN

8) OTHER

1) ADC GATE ARRAY
2) INPUTS
10y ABORT RETURN

1
2
3
4
5
B8
7
8

9) ALL
10) ABORT RETURN

4) LOOP MODE

1) LOGP MODE ON/OFF
2) LOOP ALL
10) ABORT LOOP TEST

5) TEST LOG

1} CLEAR TEST LOG
2} TEST LOG OFF
10) RETURN

19) ABORT RETURN

B-18

HEP-IB COMMAND
TESTQ:SBUS
TESTIO:FBUS
TESTIO:ALL
TEST:ABOR

TEST:MATH

TEST:DSP:TRIG
TEST.DSP:LO
TEST:DSP:FILT
TEST:DSP:FIFO
TEST:DSP:BASE
TEST.DSP:Z00OM
TEST:DSP:SOUR
TEST:DSP:ALL
TEST.ABOR

TEST:SOUR:LO
TEST:SOUR:.CPU
TEST:SOUR:BASE
TEST:SOUR:Z00OM
TEST.SOUR:ALL
TEST.ABOR

TEST.REC:GARR
TEST:REC:INP
TEST.ABCR

TESTALL
TEST:ABOR

TEST.LOOP[:STAT] ON| OFF
TEST.LOOP:STAR
TEST:ABOR

SCR:GONT TLOG

TEST.LOG:CLE
SCR:CONT TRAC

TEST:ABOR

FRONT PANEL KEY
10) SERVICE TESTS

1) ADJUSTMTS

1) CHANNEL 1 OFFSET
2) CHANNEL 1 CMRR
3) CHANNEL 1 FLATNESS

1) 50 kiz
2) 100 kHz
10) RETURN

4) CHANNEL 2 OFFSET

5) CHANNEL 2 CMRR

6) CHANNEL 2 FLATNESS
7) ADG

1) SECOND PASS GAIN
2) OFFSET
10) RETURN

10) RETURN
2) SPGL TEST MODES

1) DITHER ON/OFF

2) TRK ALWAYS ON/OFF
4) INPUTS: FRONT BNC
5) HIGH LEVEL CAL

6) LOW LEVEL CAL

7) SOURCE LEVEL

10) RETURN

8) SERIAL: NUMBER
10) RETURN
10) RETURN

Recall
1) RECALL TRACE

) RCL FROM 'TRACET'
) RCL FROM 'TRACE2'
) RCL FROM 'TRACE3’
) RCL FROM 'TRACE4'
) RCL FROM 'TRAGES'
} ROL FROM 'TRACES'
) RCL FROM "TRACET"
) RCL FROM 'TRACES'
) DEFINE FILENAME
0

1
2
3
A
5
6
7
8
9
10) RETURN

Cross-Reference from Front-Panel Keys 1o HP-IB Commanrds

HP-IB COMMAND

SERV:ADJ.OFFSH
SERV:ADJ:.CMRR1

SERV.ADJ:FLAT1:CENT
SERV:ADJ:FLATTFULL

SERV:-ADJ.OFFS2
SERV:ADJ.CMRR2
SERV:ADJ:FLATZ

SERV:ADJ:ADC:GAIN
SERV:ADJ:ADC:OFFS

SERV-DITH ON| OFF
SERV:TRAC ON | OFF

SERV:CAL:HIGH ON
SERV.CAL:LCW ON
SERV:SOUR:INP ON

MMEM:GET | LOAD: TRAC[:A|:B|1|2] “TRACET"
MMEM:GET |LOAD:TRAC[:A|:B| 1|2} *"TRACE2"
MMEM:GET | LOAD:TRAC{:A|:B|112] “TRACE3"
MMEM-GET | LOAD:TRAC[:A|:B|1 |2] *TRACE4"
MMEM-GET | LOAD:TRAC[:A|:B|1|2] “TRACES"
MMEM:GET|LOAD: TRAC[:A|:B| 1]2] “TRACES*
MMEM:GET | LOAD: TRAC[:A}:B| 1| 2] "TRACET"
MMEM:GET | LOAD:TRAC[:A|B|1]2] “TRACES"
MMEM:GET | LOAD:TRAC[:A|:B|1]2] *<filename>"

B-19

Cross-Reference from Front-Panel Keys to HP-IB Commands

FRONT PAREL KEY

2) RECALL STATE

1) RCL FROM 'STATEY’
2) RCL FROM 'STATE?
3) RCL FROM 'STATES
4) RCL FROM 'STATE4
5) RCL FROM 'STATES'
6) RCL FROM 'STATEE'
7) RCL FROM 'STATE?
8) RCL FROM 'STATE®
9) DEFINE FILENAME
10) RETURN

3) RECALL MATH

1) RCL FROM 'MATHY’
2) RCL FROM 'MATH2'
3) RCL FROM ‘MATH3'
4) RCL FROM 'MATH4'
5) RCL FROM 'MATHS'
6) RCL FROM 'MATHE'
7) RCL FROM 'MATH7'
8) RGL FROM 'MATHS'

HP-IB COMMAND

MMEM:GET | LOAD.STAT "STATE1*
MMEM:GET | LOAD:STAT "STATE2"
MMEM:GET | LOAD:STAT *STATE3"
MMEM.GET{LOAD:STAT "STATE4*
MMEM:GET | LOAD: STAT "STATES"
MMEM:GET [LOAD:STAT "STATEG"
MMEM:GET|LOAD:STAT "STATE/
MMEM:GET [LOAD:STAT *STATES"
MMEM:GET|LOAD:STAT "<«filename >*

MMEM:GET [LOAD:MATH "MATH1*
MMEM:GET | LOAD:MATH "MATH2*
MMEM:GET | LOAD:MATH *MATH3"
MMEM:GET | LOAD:MATH *MATH4"
MMEM:GET | LOAD:MATH *MATH5"
MMEM:GET | LOAD:MATH *MATHG"
MMEM:GET | LOAD:MATH *"MATH7
MMEM:GET | LOAD:MATH "MATH8"

8) DEFINE FILENAME MMEM:GET | LOAD:MATH* <filename>"

B-20

7) FILE UTILITIES
(SEE Save - FILE UTILITIES)

10) RETURN
4) RECALL MORE
1) RECALL LIMIT MMEM:GET | LOAD:LIM <limit# >* <filename>"
2) RECALL DATA TABL MMEM:GET|LOAD:DTAB< A[:B]1|2> *«filename >"
10) RETURN -
) APPLICATN UTILITIES
1) LIST ON/OFF SCR:CONT APPL
2) LOAD APPLICATN MMEM:LOAD:APPL * <filename >*
3) LOAD ALL MMEM:LOAD:APPL-ALL" <msi>*
4) AUTO LOAD ON/OFF MMEM:LOAD:APPL:AUTO ON | OFF
10) RETURN —

FRONT PANEL KEY
g8) STORAGE CONHFIG

1) INTERNAL RAM DISC
2) INTERNAL DISC

3) EXTERNAL DISC

7) FORMAT ASCI/BIN

8) PERIPHERL ADDRESSES

1) DISC ADDRESS

2) DISC UNIT

3) DISC VOLUME

4) PLOTTER ADDRESS

5) PRINTER ADDRESS
10) RETURN

9) CATALOG ON/OFF
10) RETURN

9) CATALOG ON/OFF
10) DISC FUNCTIONS

1) FORMAT OPTION
2) INTRLEAVE FACTOR
4) START FORMAT

8) STORAGE CONFIG

1) INTERNAL RAM DISC
2) INTERNAL DISC

3) EXTERNAL DISC

7) FORMAT ASCI/BIN

8) PERIPHERL ADDRESSES

1) DISC ADDRESS
2) DISC UNIT

3) DISC VOLUME
4) PLOTTER ADDRESS
9) PRINTER ADDRESS
10) RETURN

9) CATALOG ON/QOFF
10} RETURN

9) CATALOG ON/OFF
10) RETURN

User Define

Cross-Reference from Front-Panel Keys to HP-IB Commands

HP-IB COMMAND

MMEM:MSI*RAM:*
MMEM:MSE “INT:*
MMEM:MSI "EXT:"
MMENM:FORM ASC|BIN

MMEM:MSEADDR <NRf>
MMEM:MSEUNIT <NRf>
MMEM:MSEVOL <NRf>
PLOT:ADDR <NRf>
PRIN:ADDR <NRf=

SCR:CONT DCAT
SCR:CONT DCAT

MMEM:INIT:-OPT <NRf>
MMEM:INITANT <NRf>
MMEMINIT "<msi>"

MMEM:MSI *RAM
MMEM:MSI *INT:"
MMEM:MSI "EXT:®
MMEM:FORM ASC|BIN

MMEM:MSI:ADDR <NRf>
MMEM:MSEUNIT <NRf>
MMEM:MSEVOL <NRf>
PLOT:ADDR <NRf>
PRIN:ADDR <NRf>

SCR:CONT DCAT

SCR:CONT DCAT

B-21

Cross-Reference from Front-Panel Keys to HP-IB Commands

Numeric Entry Group

FRONT PANEL KEY HP-IB COMMAND
Marker Value MARK[:A]:B[1]|2]:VAL

B-22

Appendix C
HP-IB Command List

Common Commands (defined by IEEE 488.2)

*CAL?

*GLS

*ESE <NR{>
*ESE?
*ESR?

*|DN?

*0OPC

*QpC?
*CPT?

*PCB <NRi>[,<NR{>]
*PSC < NRf>
*pSG?

*RST

*SRE <NRf>
*SRE?
*STB?

*TRG

*TST?

WA

C1

HP-IB Command List

Device-Specific Commands

ARM

ARMEiMMediate]
ARM:SOURce {FREE |HOLD}
ARM:SOURce?

AVERage

AVER:COUNt <NRf>
AVER:COUNt?
AVER:DISPlay

AVER:DISP:RATE <NRi>

AVER:DISP:RATE?

AVER:DISP:RATE
AVER:DISP:RATE:STATe {OFF[ON|0]1}
AVER:DISP:RATE:STATe ?

AVER:INITialize

AVER:OVERIap <NRf> [PCT]
AVER:OVERlap?

AVER[:STATe] {OFF |ON|0|1}
AVER[:STATe] ?

AVER:TYPE {PEAK |RMS [VECT}
AVER:TYPE?

AVER:WEIGhting {EXP|STAB}
AVER:WEIGhting?

CAlibration

CAL[:ALL)?

CAL.AUTO {OFF|ON|[O|1}
CAL:AUTO?

CAL:CLEar

CAL:SINGle

CAL:TRACe {OFF|ON|0|1}
CALTRACe?

CONFigure

c-2

CONF:TYPE {NETW |SPEC}
CONF:TYPE?

DISPlay[:A|:B}1]2]

DISP.DATA?
DISP:GRATicule {OFF|ON|0|1}
DISP.GRATicule?
DISP:HEADer
DISP:HEAD:AFORmat {ASC | FP32|FP64}
DISP:HEAD:AFORmat?
DISP:HEAD:NAME?
DISP:HEAD:POINts?
DISP:HEAD:PREamble?
DISP:HEAD:XINCrement?
DISP:HEAD:XNAMe?
DISP:HEAD XORigin?
DISP:HEAD:XPQints?
DISP;HEAD:XUNits?
DISP:HEAD:YINCrement?
DISP:HEAD:YNAMe?
DISP:HEAD:YORigin?
DISP:HEAD:YPQints?
DISP:HEAD:YUNits?
DISP:LIMit
DISP:LIM:BEEPer {OFF|ON]O|1}
DISP.LIM:BEEPer?
DISP-LIM:FAIL
DISP:LIM:FAIL[.DATA}?
DISP:LIM:FAIL:HEADer
DISP:LIM:FAIL:HEAD:AFORmat {ASC | FP32|FP64}
DISP:LIM:FAIL:HEAD:AFORmat?
DISP:LIM:FAIL:HEAD:POINts?
DISP:LIM:LINE {OFF|{ON|0|1}
DISP:LIM:LINE?
DISP:LIM:STATe {OFF|ON}0{1}
DISP:LIM:STATe?
DISP.LIM[:TABLe] <NRf>
DISP.LIM[TABLe] ?
DISP:LIM:TEST
DISP:LIM.TEST[:DATA)?
DISP:.LIM:TEST:HEADer
DISP:LIM:TEST.HEAD:AFORmat {ASC |FP32|FP64}
DISP.LIM:TESTHEAD:AFORmat?
DISP;LIM:TEST-HEAD:PQINts ?
DISP:X
DISP:X:APERture <NRf> [PCT]
DISPX:APERture?
DISP:X:SPACing {LIN|LOG}
DISP:X:SPACing?

HP-B Command List

C-3

HP-1B Command L.ist

DISPLY]

DISPEY]:AXIS {GDEL | IMAG | MAGN | PHAS | REAL | LINM | LOGM}

DISPLY]. AXIS?

DISP[Y]:SCALe
DISP[Y]:SCAL:AUTO

DISP[:Y):SCAL:AUTO:SINGIe

DISPLY]:SCAL:CENTer <NRf>
DISP[:Y].SCAL:CENTer?
DISPEY]:.SCAL:DIVision <NRf>
DISPLY]:.SCAL:DWision?
DISP[Y]:SCAL:REFerence {CENT|STAR|STOP|INP}
DISPL:Y].SCAL.REFerence?
DISPL.Y]:SCAL:STARt <NRf>
DISPL.Y]:SCAL:STARt?
DISPL.Y]:SCAL:STOP <NRf>
DISP[.Y]:SCAL:STOP?
DISP[:Y]:SCAL:UNITs <string>
DISP:Y}:SCAL:UNITs?

DISP[.Y]:SPACing {LIN [LOG}

DISP[:Y].SPACing?

FREQuency

FREQ:CENTer <NRf>
FREQ:CENTer?
FREQ:GENTer
FREQ:CENT.STEP <NRf>
FREQ:CENT:STEP?
FREQ:REFerence {CENT|STAR}
FREQ:REFerence?
FREQ:SPAN <NRf>
FREQ:SPAN?
FREQ:SPAN
FREQ:SPAN:FULL
FREQ.STARt <NRt>
FREQ:STARt?

GPIB

GPIB.LEDS {OFF|ON]O|[1}
GPIB:LEDS?

GPIB:MNEManic {ECHO | OFF|SCR}
GPIB:MNEMonic?

INITialize

INIT:STATe {PAUS|RUN|STAR}
INIT-STATe ?

C4

INPut[1]2]

INP.COUPling {AC | DC}
INP:COUPling?
INP:IMPedance <NRf>
INP:IMPedance?
INP.LOW {FLD|GRO}
INP.LOW?
INP:RANGe <NRf>
INP:RANGe?
INP:RANGe
INP:RANG:AUTO {OFF{ON|Oi1}
INP:RANG:AUTQ?
INP:UNIT {EU|VOLT}
INP:UNIT?
INP:UNIT
INP-UNIT.EU
INP:UNIT-EU:MULTiplier <NRf>
INP:UNIT-EU:MULTiplier?
INP:UNIT:EU:NAME <string>
INP:UNIT.EU:NAME?

LIMit[1-8]

LEMit: TABLe
LIMIt TABL{DATA] <block data>
LIMit: TABL[:DATA}?
LIMit: TABL:HEADer

LIMit: TABL:HEAD:AFORmat {ASC | FP32 | FP64}

LIMit: TABL:HEAD:AFORmat?
LIMit: TABL:HEAD:POINts?

HP-IB Command List

G5

HP-B Command List

MARKer[:A|:B|1]2]

C-8

MARK:BAND
MARK:BAND:CENTer <NRf>
MARK:BAND:CENTer?
MARK:BAND:POWer?
MARK:BAND:PQWer
MARK:BAND:POW:STATe {OFF|ON|0|1}
MARK:BAND:POW.STATe?
MARK:BAND:STARt <NRf>
MARK:BAND:STARt?
MARK:BAND:STATe {OFF|ON|O|1}
MARK:BAND:STATe?
MARK:BAND:STOP <NRf>
MARK:BAND:STOP?
MARK:DTABle
MARK:DTAB[:DATA] <block data>
MARK:DTAB[:DATA]?
MARK:DTAB:HEADer

MARK:DTAB:HEAD:AFORmat {ASC {FP64]FP32}

MARK:DTAB:HEAD:AFORmat?
MARK:DTAB:HEAD:POINts?
MARK:DTAB:STATe {OFF|ON| 0|1}
MARK:DTAB:STATe?
MARK:FUNC:AOFF
MARK:HARMonic

MARK:HARM:COUNt <NRf>

MARK:HARM:COUNt?

MARK:HARM[.FREQuency] <NRf=

MARK:HARM[:FREQuency]?

MARK:HARM:[FREQuency]
MARK:HARM:[FREQ):DiVide <NRf>

MARK:HARM:POWer?

MARK:HARM:POWer
MARK:HARM:POW:STATe {OFF|ON]0{1}
MARK:HARM:POW:STATe?

MARK:HARM:STATe {OFF|ON|0[1}

MARK:HARM:STATe ?

MARK:HARM:THD?

MARK:HARM:.THD
MARK:HARM:THD:STATe {OFF|ON|0|[1}
MARK:HARM:THD:STATe?

MARK:SIDeband

MARK:SID:COUNt <NRf>

MARK:SID:COUNt?

MARK:SID:DELTa <NRf>

MARK:SID:DEtTa?

MARK:SID[:FREQuency] <NRf>

MARK:SID[:FREQuency] ?

MARK:SID:POWer?

MARK SID:POWer
MARK:SID:POW.STATe {OFF|ON|0]|1}
MARK:SID:POW:STATe?

MARK:SID:STATe {OFF|ON|0| 1}

MARK:SID:STATe?

MARK[:X] <NRf>
MARK[:X]?
MARK[X}

MARK[:X]:AMAXimum
MARK[:X]:AMAX:AUTO {OFF|ON|0|1}
MARK[:X]:AMAXAUTO?
MARK[X]:AMAX[:GLOBa]]
MARK[X]:AMAXLEFT
MARK[X]: AMAX:RIGHt

MARK[:X]:AMINimum
MARK[X].:AMIN[.GLOBa]]

MARK[:X]:AMPLitude?

MARK[X]:AUTO {OFF{ON|0}1}

MARK[:X]:AUTO?

MARK[:X].DELTa <NRf>

MARK[:X]:DELTa?

MARK[:X].DELTa
MARK[X].DELT:AMPLitude <NRf>
MARK{ X} DELT.AMPL itude?
MARK[X]:DELT:POINts <NRf>
MARK[X].DELT.POIN?
MARK[X}:DELT:ZERQ

MARK[X]:MODE {DELT |NORM}

MARK[.X]:MODE?

MARK[:X]:POINt <NRf>

MARK[.X]:POINt?

MARK[:X]:SEARch
MARK[.X].SEAR:AMPLitude <NRf>
MARK[:X]:SEAR:AMPLitude?
MARK[X].SEAR:LEFT
MARK[:X].SEAR:RIGHt

MARK[:X]:STATe {OFF{ON|0|1}

MARK[X].STATe?

HP-IB Gommand L.st

C-7

HP-IB Command List

MMEMory

C-8

MMEM:COPY <string>, <string>
MMEM:DELete <string>
MMEM:FORM {ASC |BIN}
MMEM:FORM?
MMEM:GET
MMEM:GET:DTABle{:A| :B|1]2} <string>
MMEM:GET.LIMit{limit#} <string>
MMEM:GET.MATH <string>
MMEM:GET.STATe «string>
MMEM:GET:TRACe[:A|:B|1]2] <string>
MMEM:INITialize {*INT:*|"EXT:*|*RAM;"}
MMEM:INITialize
MMEM:INIT:INTerleave <NRf>
MMEM:INIT:INTerleave?
MMEM:INIT:OPTion <NRf>
MMEM:INIT.OPTion?
MMEM:LOAD
MMEM:LOAD:APPLication <string>
MMEM:LOAD-APPL:ALL {HINTI|"EXT:*|"RAM"}
MMEM:LOAD:APPL:AUTO {OFF|ON|0|1}
MMEM:LOAD:APPL.AUTO?
MMEM:LOAD:DTABle{:A|:B|1|2} <string>
MMEM:LOAD:LIMit{limit#} <string>
MMEM:LOAD:MATH <siring>
MMEM:LOAD:STATe <string>
MMEM:LOAD:TRACe[:A|:B|1]2] <string>
MMEM:MSI
MMEM:MSI:ADDRess <NRf>
MMEM:MSI:ADDRess?
MMEM:MSIUNIT <NRf>
MMEM:MSIUNIT?
MMEM:MSI:VOLume <NRf>
MMEM:MSI:VOLume?
MMEM:MSI {"INT" | "EXT:* | "RAM:"}
MMEM:MSI?
MMEM:REName <string>, <string>
MMEM:SAVE
MMEM:SAVE:DTABIe{;A|:B|1]2} <string>
MMEM:SAVE:LIMit{limit#} <string>
MMEM:SAVE:MATH <string>
MMEM:.SAVE:STATe <string>
MMEM:SAVE: TRACe[:A|:B|1]2] <string>
MMEM:STORe
MMEM.STOR.DTABle{:A|:B|1]2} <string>
MMEM:STOR:LIMit{limit#} <string>
MMEM:STOR:MATH <string>
MMEM:STOR:STATe <string>
MMEM:STOR:TRACe[:A|:B|1]2] <string>

PLOTter

PLOT.ADDRess <NRf>
PLOT.ADDRess?
PLOT:DUMP
PLOT:DUMP:MARKer
PLOT:DUMP:SCReen
PLOT:DUMP:TRACs
PLOTATYPe
PLOTLTYP.TRAC[A]:B|1|2] <NRf>
PLOT.LTYP.TRAC[A|:B|1]|2]?
PLOTPEN
PLOT:PEN.ALPHa <NRf>
PLOT:PEN:ALPHa?
PLOT:PEN:GRID <NRf>
PLOT:PEN-GRID?
PLOT:PEN:INITialize
PLOT:PEN:TRACe[:A|:Bj1|2] <NRf>
PLOT.PEN:TRACe[:A|:B{1]|21?
PLOT:SPEed <NRf>
PLOT:SPEed?

PRINter

PRIN:ADDRess <NRf>

PRIN:ADDRess?

PRIN:DUMP
PRIN:DUMP:ALPHa
PRIN:DUMP:SCReen

SCReen

SCR:ACTive {A|B}
SCR:ACTive?

SCR:ANNotation {OFF|CN|0|1}
SCR:ANNotation?

SCR:CONTents {APPL) DCAT|FLOG |[MEM|STAT | TLOG | TRAC}

SCR:CONTents?

SCR:FORMat {FBAC |SING {ULOW}
SCR:FORMat?

SCR[:STATe] {OFF|ON|O|1}
SCR[:STATe]?

HP-IB Command List

C-9

HP-B Command List

SERVice

SERV:ADC2

SERV:ADC2:PAS2 {OFF [ON| 110}
SERV:ADJ

SERV:ADJ:ADC

SERV:ADJ:ADC:GAIN
SERV:ADJ:ADC:OFFS
SERV:ADJ:CMRR[1]2]
SERV:ADJ:FLAT1
SERV:ADJ:FLAT:CENT
SERV:ADJ:FLATY:FULL

SERV:ADJ:FLAT2

SERV:ADJ:OFFS[1 |2]
SERV.CAL

SERV:CALHIGH {OFF[ON]0| 1}

SERV:CAL:HIGH?

SERV:CAL:LOW {OFF|ON|0|1}

SERV:CAL:LOW?

SERV:TRACK {OFF|ON|0{1}
SERV:TRACK?

SERV:DITH {OFF|ON|0[1}
SERV:DITH?

SERVINP([1]2]

SERV:INP[1]2]:0FFS <NRf>
SERV:SHOR[112] {OFF|ON| 10}
SERV:SOUR

SERV:SOUR:INP {OFF|ON|0|1}

SERV:SOUR:INP?

SOURce

SOUR:AMPLitude
SOUR:AMPL[LEVel] <NRf>
SOUR:AMPLI:LEVel]?

SOUR:FREQuency
SOUR:FREQ[:CW] <NRf>
SOUR:FREQ[,CW]?
SOUR;FREQ:MODE {RAND|CW|PCH}
SOUR:FREQ:MODE?

SOUR:STATe {OFF|ON|D|1}

SOUR:STATe?

C-10

STATus

STAT:DEVice

STAT.DEV:.CONDition?
STAT:DEV:EENABIe <NRf>
STATDEV:ENABle?
STAT:DEV.EVENt?
STAT.DEVINTR <NRf>
STAT.DEVNTR?
STAT:-DEV:PTR <NRf>
STATDEV.PTR?

STAT.DINTegrity

STAT.DINT.CONDition?
STAT:DINT.ENABIe <NRf>
STAT:DINT:ENABIe?
STATDINT-EVENt?
STAT:DINTNTR <NRf>
STAT:DINT:NTR?
STAT:DINT:PTR <NRi>
STAT:DINT:PTR?

STAT.USER

SWEep

STAT.USER:ENAB le <NRf>
STAT.USER:ENABIe?
STAT.USER:EVENt?
STAT:USER:PULSe <NRf>

SWE.TIME <NRf>
SWE:TIME?

HP-IB Command List

HP-1B Command List

SYSTem

SYST:ADDRess <NRf>
SYST:ADDRess?
SYST.BEEPer {OFFJON1G|1}
SYST.BEEPer?
SYST:DATE <NRf>,<NRi>,<NRf>
SYST:DATE?
SYSTDTIMe <NRf>,<NRf>, <NRf> <NRl>,<NRf>, <NRf>
SYST:DTiMe?
SYST:DUMP
SYSTDUMP:PLOTer <NRf>
SYST.DUMP:PLOTer?
SYSTDUMP:PRINter <NRf>
SYST.DUMP:PRINter?
SYST:ERRor?
SYSTFLOG?
SYSTFLOG
SYSTFLOG:CLEar
SYST.FLOG:ENTRY
SYSTFLOG.ENTR:DESCription <NRf>
SYST:HEADer {OFF[ON|0|1}
SYST:HEADer?
SYST.MEMory?
SYST.SAVE
SYST.SERial?
SYST.SET «block data>
SYST.SET?
SYSTSET
SYST.SET:FORM {ASC | BIN}
SYST:SET-FORM?
SYSTTIME «<NRf>,<NRf> <NRf>
SYSTTIME?

C-12

HP-IB Gommand L.ist

TEST

TEST:ABOR
TESTALL
TEST.DISP
TEST.DISP.PATT {OFF[CN{Q|1}
TEST:DISP:PATT?
TEST.DMA
TESTDSP
TEST.DSP:ALL
TEST:DSP:BASE
TEST.DSP:FIFO
TEST:DSP:FILT
TEST:DSP:LO
TEST:DSP.SOUR
TEST:DSP:TRIG
TEST:DSP;Z00M
TEST:IO
TESTIO:ALL
TESTI0:DISC
TEST:10:DISC:ALL
TESTIQ:DISC.CONT
TESTI0:DISC:MOT
TEST:10:DISC:RAND
TEST:I0:DISC.READ
TESTAO:DISC:REST
TESTIO:DISC:RW
TEST:Q:DISC:SEEK <NRf>
TEST:I0:DISC:WRIT
TESTI0:FBUS
TESTIO:KEY
TESTI0:SBUS
TESTKEY?
TEST.LCONfidence
TEST:LCON;RESult?
TESTLOG?
TESTLOG
TEST.LOG:.CLE
TESTLOOP
TEST:LOOP:STARt
TEST:LOOP[:STAT] {CFF|ON|0] 1}
TEST.LOOP[.STAT]?
TEST-MATH
TEST:PROC
TEST:PROC:ALL
TEST.:PROC:GPU
TEST:PROCINT
TEST:PROC MFP
TEST:PROC:RAM
TEST:PROC:ROM
TESTREC
TEST:REC:GARR

HP-IB Command List

TEST.REC:INP
TEST:RESult?
TEST:SHORt
TEST:SOURce

TEST:SOUR:ALL

TEST.SOUR:BASE

TEST:SOUR:GPU

TEST.SOUR:LO

TEST:SQUR:Z00M

TRACe[:A|:B|1]2)

C-14

TRAC:DATA <block data=

TRAC:DATA?

TRAC:DATA
TRAC:DATA:SET <block data>
TRAC:DATA:SET?

TRAC HEADer
TRAC:HEAD:AFORmat {ASC |FP32 |FPB4}
TRAC:HEAD:AFORmat?
TRAC:HEAD:NAME <string>
TRACHEAD:NAME?
TRACHEAD:POINts <NRf>
TRAC:HEAD:PQINts?
TRAC:HEAD:PREamble?
TRAC-HEAD XINCrement <NRf>
TRAC:HEADXINCrement?
TRAG:HEAD:XNAMe?
TRAC:HEAD:XORigin <NRf>
TRAG:HEAD:XORigin?
TRAC:HEAD:XPQints <NRf>
TRAC:HEAD:XPQints?
TRAG:HEAD:XUNits ?
TRAG:HEAD.YINCrement <NRf>
TRAC:HEAD:YINCrement?
TRACHEAD:YNAMse ?
TRACG:HEAD:YORigin <NRf>
TRACG:HEAD:YORigin?
TRAC:HEAD:YPOints <NRf>
TRAC:HEAD:YPQints?
TRAC:HEAD:YUNits ?

TRAC:RESult {COH |CSP|F{1-5} |FRES |K{1-5}[PSD{t|2}|SPEC{1|2} | TIME{1|2}}

TRAC:RESult?

TRAC TITLe <string>

TRAC:TiTLe?

HP-IB Command List

TRIGger

TRIG:DELay[1{2] <NRf>

TRIG:DELay[1]2]?

TRIG[:IMMediate]

TRIG:LEVel <NRf> [PCT]

TRIG:LEVel?

TRIG:SLOPe {NEG|FOS}

TRIG:SLGPe?

TRIG:SOURce {BUS|FREE|EXT|INT{1]2}|SOUR}
TRIG:SOURce?

USER

USER:EXPRession {F1[F2|F3|F4]F5}, <expr>

USER:EXPRession? {F1|[F2|F3|F4|F5}

USER:VARiable
USER:VAR:IMAG {K1[K2|K3]K4]K5}, <NRf>
USER:VAR:IMAG? {K1|K2|K3|K4|K5}
USER:VAR:MAGNitude {K1|K2|K3]K4|K5},<NRt>
USER.VAR:MAGNitude? {K1|K2|K3|K4]|K5}
USER:VAR:PHASe {K1]K2|K3|K4|K5},<NRf> [RAD|DEG]
USER:VAR:PHASe? {K1 |K2|K3|K4|K5}
USER:VAR:REAL {K1]K2|K3|K4|K5},<NRf>
USER:VAR:REAL? {K1[K2|K3|K4|K5}

WINDow[1]2]

WIND:CONStant
WIND:CONS:EXPonential <NRf=
WIND:CONS:EXPcnential?
WIND.CONS:FCRCe <NRf>
WIND:CONS:FORCe?

WIND[TYPE] {FLAT|HANN|UNIF{FORC | EXP}

WIND[:TYPE]?

C-15

Appendix D
Error Messages

Introduction

This appendix lists error messages generated by the HP 35660A. As many as ten messages
can be stored in the analyzer’s error queue. One message is read from the queue each time
you send the SYST:ERR query. Errors are returned in the order generated.

NOTE When queried with SYST:ERR?, the HP 35660A returns a maximum of 255
characters. It truncates any error messages greater than 255 characters before

putting them on the HP-IB.

D-1

Error Messages

Command Errors

-100 CMD ERR

Disc controller error

Empty function redefinition not allowed
Function definition too fong, split into two functions
incompatible mix of operand types

Lower function number required

Not a valid message unit delimiter

Parameter cannot be decremented

Parameter cannot be incremented

Unbalanced left and right parentheses

YOU PRESSED <num > KEYS IN <string>
<num > execution exceeds memory kimitations

-101 INVALID CHAR

-110 BAD CMD

D-2

Command is not a query: "<string>'
Unknown command: '<string>'

Error Messages

-120 BAD PARM

Block data contains bad parameters

Block data expected

Data block too long {truncating)

Definite block data expected

Eng Label syntax error, unbalanced {) chars, previous label retained
Eng Label syntax error, ~ not followed by number or more than one ~, previous label retained
Header format not recognized

{legal decimal point

{legal exponent

index too large, moving to largest

Index toe small, moving to smallest

Not a valid choice

Not a valid data block: '<string>’

Not a valid expression: " <string>'

Not a valid number and/or units

Not a valid number

Not a valid number, ' <string>"

Not a valid parameter ; <string>

Not a valid stored data filename : <string>
Not a valid string: " <string>’

Not a valid suffix ’ <string>"'

Not a valid unit

Too many characters.

Too many digits

Wrong type of parameter: "< string>'
<string>

-123 OVERFLOW

-129 PARM MISSING

Missing parameter

-142 TOO MANY PARMS

Command is query only
Incarrect number of parameters
No entry allowed

Parameter is inactive

D-3

Error Messages

Execution Errors

-200 EXECUTE ERROR

Application load aborted, "< string>" is already loaded
Application load aborted, '<string>" is auto-load only
Attempt to go beyond end of storage

Cannot change units

Cannot format a single sided disc

Copy aborted, Destination does nct have space

Copy aborted Source and Destination media are the same
COPY DISC with same source and destination can not be exscuted over HP-IB
Disc format aborted

Disc operation aborted

Disc operation already in progress

Disc operation failed

File "< string>" does not contain <string>

Full directory

Not a valid base node

Not a valid directory name

Not a valid directory

Not a valid file name

Not a vaiid file type

Not a valid volume, press CONTINUE COPY when ready, press ABORT COPY to quit
Not ready, press CONTINUE COPY when ready, press ABORT COPY to quit
Please PAUSE triggered measurement to use Internal Disc
Plot/ Print Aborted

Plot already in progress, press ABORT to stop

Print already in progress, press ABORT to stap

Re-size faiure

Requested size exceeds <num> hytes available

Serial number has not been defined

Size too big, maximum is <num > bytes

Storage device busy

Target not found

Terminated due to device error

This fabel reserved for display, previous label retained
Unable to delete due to open file

Unable to read file ' <string>"

Unable to read file '<string>". Instrument has been preset
Unable to write file ' < string>’

<num > definition is not valid for execution

-203 TRIGGER ERROR

D-4

Error Messages

-211 SETTINGS CONFLICT

ARM is automatic, key ignored

Band markers alfowed only in frequency domain

CHANNEL 2 TRIGGER net permitted in MEAS TYPE 1 CHANNEL.
COHERENCE data is not valid with PEAK HOLD AVERAGE
COHERENGE data is not valid with VECTOR AVERAGE

CROSS SPECTRUM data is not valid with PEAK HOLD AVERAGE
CROSS SPECTRUM data is not valid with PEAK HOLD AVERAGE
FREQUENCY RESPONSE data is not valid with PEAK HOLD AVERAGE
FREQUENCY RESPONSE data is not valid with PEAK HOLD AVERAGE
Harmonic markers allowed only in frequency domain

Log X axis not allowed with X axis values less than 0

Main marker is off

Marker results not available with this measurment data

Marker results not available with this trace type

Marker vaiue not a valid entry

No fimit table is associated with this trace Use SELECT LIMIT key
No valid results are available

Reference level must be less than 0 d8 in Coherence

Reference level must be less than 1 in Coherence

Reference level tracking not allowed on this data

SCR:CONT FLOG must be sent first

Select AVERAGE ON before COBERENCE data

Select AVERAGE ON to view COHERENCE data

Select AVERAGE TYPE RMS to view COHERENCE data

Select AVERAGE TYPE RMS to view COHERENCE data

Select MEAS TYPE '2 Channel’ {0 view channei 2 PSD data

Select MEAS TYPE "2 Channel' to view channel 2 spectrum data
Select MEAS TYPE '2 Channel' to visw channel 2 TIME data

Select MEAS TYPE *2 Channel' to view COHERENGE data

Select MEAS TYPE "2 Channel' to view CROSS SPECTRUM data
Sefect MEAS TYPE '2 Channel’ to view FREQUENCY RESPONSE data
Serial number already set

Sideband markers allowed only in frequency domain

This trace type is not allowed with the current MEAS DATA selection
<num > exgcution requires unavailable measurement data operand : <string> Change instrument setup to correct
<pum > execution requires unavailable stored data operand : <string> Change instrument setup to correct

D-5

Error Messages

-212 OUT OF RANGE

D6

Address must be between 0 and 30

Bottom of scale must be positive

Bottom of scale out of range, value not accepted
Center of scale must be positive

Center of scale out of range, value not accepted
dBm Ref Impedance cannotbe <=0

Directory name limited to <num:= characters
Disc does not support specified farmat option
Disc does not support specified intsrleave

Eng Label cannot be a space string, previous label retained
Eng Label too long, shortened to 8 characters
Eng Unit Value cannot be = 0, previous value retained
Exceeded maximum number of segments

File name limited to <num > characters
interleave too large

Line type must be between 0 and 6

Marker X entry must be within span

No fault log entry at position <pum>
Non-printing characters are not allowed

Not a valid date, system date not reset

Not a valid entry, nearest acceptable value selected
Not a valid format option for the internal disc

Not a valid security code

Not a valid serial number

Not a valid time, system time not reset

Null file names are not allowed

Qut of range

Qut of range

Pen number must be between 0 and 64

Perdiv out of range, value not accepted

Plot speed must be between 1 and 100
Selected limit table out of range

Serial number must be 10 characters

Top of scale must be positive

Top of scale out of range, value not accepted
Valid disc unit values are 0 to 15

Valid disc volume values are Oto 7

Valid HP-1B addresses are 0 to 30

Valid HP-IB disc addresses are 0to 7

Error Messages

-222 OUT OF MEMORY

Application load of *<string>" aborted, Not enough memary
Insufficient memory 0 add new segment

Insufficient memory to recall data table

Insufficient memory to recall fimit table

Not enough memory for <string>

Unable to allocate copy buffer

-240 MASS STORAGE ERROR

Application load of "<string>" aborted, Mass storage failure
Auto sparing invoked

Bad disc request status

Bad disc status

Bad disc

Block address too largs

Cannot execute unti! diagnostic release

Cannot execute until internal maintenance release
Cannot execute until operator release

Channel parity error

Cross-unit error during copy data

Diagnostic failed

Diagnostic release requested

Disc error

Disc removed when files open, files are now closed
Disc Timeout

Hardware fault in controller

Hardware fault in unit

lllegal opcode

Hlegal parafief operation

Internal maintenance release requested

Latency induced

Message length wrong

Message sequence viclated

Operator release requested

Parameter out of range

Parameter wrong length

Retry transaction

D-7

Error Messages

-241 HARDWARE MISSING

Disc controller error

Disc drive error

[llegal vofume or unit number
Plot / Print device not present
Unrecognized disc drive

-242 NO MEDIA

Disc not in drive
Not ready (No media)
Storage device not found

-243 BAD MEDIA

0-8

Application load aborted, '<string>" is not an application
Bad media

Disc CRC error

End of file

End of volume

Maintenance track overilow

Marginal data

Media wear (1 spare left)

Mors than one unrecoverable data block
No data in a biock

No spare tracks left

Racoverable data overflow

Recoverable data

Unformatted media

Unrecoverable data block

Error Messages

-244 MEDIA FULL

Insufficient disc space

-245 DIR FULL

-246 FILE NAME NOT FOUND

Application load aborted, File "< string=>" not found
File not found

File " <string=>" not found

No new applications found

-247 DUPLICATE NAME

Duplicate file name

-248 MEDIA PROTECTED

Appiication load aborted, File ’<string>" is protected
Write protect
Write protected disc

D-g

Error Messages

Internal Errors

-300 INTERNAL ERROR

Auto-zero fails Chan:<num > Range: <num> dBVrms

DMA Timeout

EEPROM clear failed to zero all bytes

EEPROM not initialized correctly

Front panet key (#<num=>) is stuck

IIC (slow bus} failed on power up

Keyhoardtest fails

Memory option failed. Instrument has been re-configured to use <num> megabytes
No data received during cal

No source trigger received during cal

Power on tests fail, for details please see: <Special Fotn> <Sel Test> <Test Log>
Save system configuration to EEPROM failed

-302 SYSTEM ERROR

See SPECIAL FCTN Fault Log

-303 TIME OUT ERROR

D-10

Control not requested {control passed back)
Controlter did not pass control
Controlter did not receive control back

-310 MEMORY ERROR

-313 CAL DATA LOSS

Calibration fails: <string>

-330 SELF TEST ERROR

-350 TOO MANY ERRORS

Error Messages

Error Messages

Query Errors

-400 QUERY ERROR

-410 INTERRUPTED

Query interrupted

-420 UNTERMINATED

Command unterminated near "<string>"; addressed to talk with nothing to say

-422 ADDR TALK NO OUTPUT

-430 DEADLOCK

HP-{B deadlocked, cutput bufter cleared

D-12

A

Active controller 1-3,2-2-2-3,2-5
Address

controller 2-12

general 1-3

HP 35660A 1-6, 7-205
mass storage 7-149
plotter 7-163

printer 7-173
Addressable-only 1-7, 2-2
<alpha> 3-6

Amplitude accuracy 7-65
Analyzer identification 7.7
Analyzer options 7-9
Aperure, group delay 7-54
Applic_Running bit 5-15
Application display 7-177

Applications
autoloading 7-143
loading 7-142
Arm

See also Trigger
automatic 7-18
manual 7-17-7-18
Arming
Ady for Armbit 5-14
ASCl encoding 4-1
ASCH index 4-16
Automatic arming 7-18
Autoranging 7-81
Autoscaling 7-57
Averaging
enabling 7-23
exponential weighting 7-19,7-24 - 7-25
fast 7-20-7-21
number of averages 7-19
peak hold 7-24 - 7-25
rms 7-24
stable weighting 7-24 -7-25
vector 7-24
with overlap processing 7-22

Index

B

Band markers

center frequency 7-92
determining power 7-93
enabling 7-96

enabling power calculations 7-84
start frequency 7-95

stop frequency 7-57

Baseband mode 7-71

Basic File Structures 4-10

Beeper

limit-test 7-45

main 7-206

Binary encoding 4-2

Binary Floating Point Numbers 4-2
Binary index 4-16
Binary-Encoded Integers 4-2
Block data 4-1-4-2,4-8

Bool 4-16

Buffers and Queuas 2-6

Bus management command 1-4, 2.2

Bus Management Commands vs. Device Commands

2-2

C

Calibrating bit 5-14
Callbration

automatic 7-28

clearing constants 7-29
displaying calibration constants 7-30
errors 7-27

executing 7-27

test 7-3

uncalibrated data 7-29
Calibration constant 5-17
Catalog display 7-177
Center frequency 7-66
Channel header record 4-17
Channe! state record 4-18
Char 4-16

Character data 4-7

Child record 4-10

Clearing status 7-4

on powerup 7-11

index (continued)

Clock

setting date 7-207

setting date and time 7-208

setting time 7-220
Coherence 7-242
Command Abbreviation 3-4
Command message unit 3-7
Command mode 2-2
Command parser 2-7, 3-3

resetting 2-7
Command tree 3-2
Command_Error (CME) bit 5-12
Common command 2-2, 7-3
Common program header 3-8
Complete result record 4-18
Compound program header 3-8
Condition register 5-4 - 5.5
Configuring the HP-IB System 1-5
Continuing a measurement 7-75
Controfler 1-3

See also Active controller

See ailso System controller
Controller Access to Files 4-15
Controller Capabilities 2-2

Coordinates
group delay 7-56
imaginary 7-56

linear magnitude 7-56
logarithmic magnitude 7-56

phase 7-56

real 7-56
Copy

discs 7-132

files 7-132
Coupling

input 7-77

markers 7-122
Cross spectrum 7-242

D

Data encoding 4-1
specifying for files 7-134, 7-154, 7-157
Data formats 4-5
Data Integrity register set 5-2, 5-6, 5-16
clearing 5-16
command descriptions 7-194 - 7-198
command overview 7-193
definition of bits 5-17
power-up states 5-16

reading 5-16
summary bit 5-16
writing 5-16
Data mode 2-2
Data table file 4-11
recalling 7-135,7-144
saving 7-154, 7-158
Data table record 4-19
Data table reference record 4-19
Data tables
data encoding 7-100
defining 7-89
enabling 7-101
number of points 7-101
obtaining results ¥-99
Data_Integrity bit 5-14
Date 7-207
dBm 7-78
Decimal Numeric Data 4-5
Definite length block data 4-8 -4-9
Delayed result command 2-11, 7-75
Deleote
entire disc 7-133
single file 7-133
Device Clear (DCL) 2-3
Device command 1-4, 2-2
Device Status register set 5-2, 5-6, 5-13
clearing 5413
command descriptions 7-188 - 7-192
command overview 7-1B7
definition of bits 5-14
power-up states 5-13
reading 5-13
summary bit 5-13
writing 5-13
Device-specific command 2-2
Device_Error (DDE) bit 5-12
Device_Status_Event bit 5-10
<digit> 3-5
Disc
See Mass storage
Disptay
See also Screen control
graticule lines 7-35
overview of display commands 7-33
trace grid 7-35
Display data
Ses also Trace data
data encoding 7-36
determining characteristics of 7-38

domain 7-40
increment between points 7-39
naming 7-37
number of points 7-37
raw vs. coordinate transformed 7-33
transferring to a contraller 7-34
x-axis origin 7-40
x-axis units 7-41
y-axis coordinates 7-42
y-axis units 7-44
y-axis values per point 7-43
Display header record 4-20
Display scaling
See also X-axis spacing
autoscaling 7-57
bottom reference 7-61
center reference 7-58
increment per divisicn 7-59
selecting a reference 7-60
top refarence 7-62
units 7-63
Display state record 4-21
Display update rate
See Fast averaging
Double 4-18

E

E-short 4-16
Enable register 5-4-5-5
<~END> 3.5
Engineering units 7-82
naming 7-84
scaling factor 7-83
Error messages
reading 7-211
Error queue 2-7
Event register 5-4 - 5-5

Event Status register set 5-2, 5-5 - 5-6, 5-10

clearing &-11

command descriptions 7-5 - 7-6

definition of bits 5-11

power-up states 5-10

reading 5-11

summary bit 5-11

writing 5-10
Event_Status (ESB) bit 5-9
Example programs 6-1
Execution_Error (EXE) bit 5-12

Exponential weighting 7-19, 7-24 - 7-25

Exponsential window
defining 7-258
selecting 7-260
Expression data 4-8
Expression record 4-21

F

Fast averaging 7-20 - 7-21
Fault log

clearing 7-212
displaying 7-177
expanding fault descriptions 7-213
reading 7-212

File data types 4-16

Fite Formats 4-10

File header 4-22

Filte structure

data table 4-11
instrument state 4-11

limit table 4-10

math 4-10

trace 4-12

Filas

data encoding 7-134, 7-154, 7-157
packing 7-152

recalling 7-135,7-141
renaming 7-153

saving 7-154, 7-157
Fixed point number 4-2, 4-5
Flat Top window 7-261
Float 4-16

Floating an input 7-79
Floating point number 4-2, 4-5
Force window

defining 7-259

selecting 7-261
Formatting discs 7-138
formatting options 7-140
interleave factor 7-139
Freeruntrigger 7-249
Frequency reference 7-68
Frequency response 7-242
Frequency span 7-69
Frequency step 7-67
Full span 7-70

Index (continued)

iii

Index (continued)

G

Go To Local (GTL) 2-3
Go-no go testing
See Limit test
Graticule lines 7-35
Grounding an input 7-79
Group delay 7-56
Group delay aperture 7-54
Group Execute Trigger (GET; 2-3

H

Hanning window 7-261
Harmaonic markers
getermining power 7-106

determining total harmonic distortion (THD) 7-109
dividing the fundamental frequency 7-105

enabling 7-108
enabling power calculations 7-107
enabling THD calculations 7-110
fundamental frequency 7-104
number of harmonics 7-103

HP-iB Interface Capabilities 2-1

HP-IB Overview 1-3

HP-IB scroll 7-74

HP-IB Setup 1-5

HP-IB status indicators 1-8, 7-73

I

IEEE 488.1 standard 14
IEEE 488.2 standard 1-4
Imaginary coordinates 7-56
impedance 7-78
indefinite length block data 4-8 - 4-89
information Flow in a Register Set 5-4
input

autoranging 7-81

coupling 7-77

floating 7-79

grounding 7-79

impedance 7-78

Over_Range bit 5-17

range selection 7-80
Input buffer 2-6
instrument state

data encoding 7-219

transferring over the HP-IB 7-218
instrument state display 7-177
Instrument state file 4-11

recalling 7-137,7-146

saving 7-156, 7-160
integer 4-2,4-5
Interface capabilities 2-1
Interface Clear (FC) 2-3

L
<L LF> 35
Limit fines

displaying 7-48

Limit table file 4-10

racalling 7-138, 7-144
saving 7-155, 7-158

Limit table record 4-22

Limit table reference record 4-23
Limit tables

data encoding 7-88

defining 7-87

number of segments 7-89
selecting 7-60

Limit test

enabling 7-49

failed point data encoding 7-47
failed points 7-46, 7-48
Limit_Fail_A bit 5-17
Limit_Fail Bbit 5-17

tested point data encoding 7-52
tested points 7-51, 7-53
Limit_Fail_A bit 5-17
Limit_Fail_B bit 5-17

Linear magnitude 7-56

Linear spectrum 7-243

Linear x-axis spacing 7-55
Listener 1-3

Loading applications 7-142
autoloading 7-143

Locai Lockout (LLO) 2-4
Logarithmic magnitude 7-56
Logarithmic x-axis spacing 7-55
Long 4-16

Long form 3-4

Ltn 7-73

M

Manual arming 7-17 - 7-18
Manual Overview 1-2
Marker state record 4-23

Markers
See also Band markers
See also Data tables
See also Harmonic markers
See also Sideband markers
coupling 7-122
disabling special marker functions 7-102
main marker amplitude 7-121
main marker enabling 7-126, 7-130
main marker position {x-axis) 7-117,7-127
marker reference positicn (x-axis) 7-123,7-125
marker reference position (y-axis) 7-124
marker reference to main marker 7-126
marker to minimum 7-120
marker to peak 7-119
move to next peak (left) 7-119
move to next peak (right) 7-120
offset: see Markers, marker reference
overview of marker commands 7-81
peak tracking 7-118
search amplitude, searching for 7-128 - 7-130
search amplitude, specifying 7-128
Mass storage
address 7-149
copying 7-132
default device 7-148
deleting 7-133
formatting discs 7-138 - 7-140
formatting options 7-140
interleave factor 7-139
overview of mass storage commands 7-131
packing files 7-152
renaming discs 7-153
unit number 7-150
volume number 7-151
Master state record 4-23
Master_Summary_Status (MSS) bit 5.9
Math
defining constants 7-252 - 7-255
defining functions 7-251
displaying 7-242
Math file 4-10
recalling 7-136, 7-145
saving 7-155, 7-159
Math record 4-24
Measurement data
See also Measurement results
coordinate transformed:see Display data
raw: see Trace Data
faw vs. coordinats transformed 7-33

Index (continued)

Measurement header record 4-25
Measurement modes

one-channel 7-32
two-channel 7-32
Maasurement results

See also Measurament data
naming 7-244

options in one-channel mode 7-32
options in two-channel mode 7-32
selecting 7-242

Measurament state record 4-26
Measurement types

See Measurement modas
Measuring bit 5-11, 5-15
Memory

nonvolatile 7-216

total RAM installed 7-215
Memory usage display 7-177
Message Exchange 2-6
Message Syntax 3-5
Message_Available (MAV) bit 5-9
Mnemonic echo 7-74
Mnemonic scroll 7-74

N

Negative transition registers 5-5
<non-zero digit> 4-5
Nonvolatiie memory
list of saved states 7-216
NR1 format 4-6
NR2 format 4-6
NR3 format 4-6
NRf format 4-8
Number of averages 7-19

0

Offset markers

See Markers,marker reference
One-channel measurements 7-32
*OPC 2-11
*OPC? 2-11
Operation Complete flag 2.9, 7-8
Operation_Complete (OPC) bit 5-11
Order of Records in a File 4-13
Output gueus 2-7,5-9
Over_Range bit 5-17
Overlap processing 7-22
Overlapped command 2-8, 5-11, 5-15, 7-8, 7-16

Index (continued)

P

Parallel Poll 24
Parent record 4-10
Passing control 2-12, 5-12, 7-10
Pausing a measurement 7-75
Peak hold averaging 7-24-7-25
Periodic chirp output 7-185
Phase 7-56
Plotter
address 7-163
initializing pen assignments 7-169
line types 7-166
pen assignment 7-167 - 7-168, 7-170
plotting speed 7-171
Plotting
entire screen 7-164, 7-209
markers 7-164
frace 7-165
transferring plot data to controtfler 7-209
Positive transition register 5-5
Power spectral density 7-242
Power spectrum 7-243
Power_On (PON) bit 5-12
Preset 7-12
Preset states
See the individual commands
Printer address 7-173
Printing
entire screen 7-174, 7-210
text 7-174
transferring print data to controller 7-210
Program data 3-9
Program header 3-8
Program message 2-8, 3-5, 3-7
Program Message Syntax 3-6
Program message terminator 3-6
Program message unit 3-7
Program mnemonic 3-8
Programming examples 6-1

Q

Query message unit 3.7

Query Response Generation 2.8
Query_Error (QYE) bit 5-12
Quick Verification 1-8

vi

R

Random noise output 7-185
Range selection 7-80-7-81
Ranging bit 5-14
Rdy_for Arm bit 5-14
Rdy_for_Trig bit 5-14
Real coordinates 7-56
Recalling fifes 7-135, 7-141
Record
channel header 4-17
channel state 4-18
child 4-10
compilete resuit 4-18
datatable 4-19
data table reference 4-19
descriptions 4-18
display header 4-20
display state 4-21
expression 4-21
limit table 4-22
limit table reference 4-23
marker state 4-23
master state 4-23
math 4-24
measurement header 4-25
measurement state 4-26
parent 4-10
special fields 4-12
system state 4-27
trace state 4-28
trace-dependent marker 4-30
vector 4-31
Record Length 4-12, 7-204
Record Reference 4-13
Record Type 4-12
Register Reporting Structure 5-2
Register set
Ses also Data Integrity register set
See also Device Status register set
Ses also Event Status register set
See also Status Byte ragister set
See also User Status register set
information flow in 54
special cases 5-5
Register summary 5-7
Register summary bit 5-4 - 5-5

Register types 5-4

condition 5-4 -5-5

snable 5-4-5-5

event 5-4-5-5

negative transition 5-6

positive transition 5-5

transition 54 -5-5
Remote Enable (REN) 2-4
Renaming files and discs 7-153
Request_Control (RQQC) bit 5-12
Request_Service (RQS) bit 5-9
Reset

See Preset
Response data 3-11
Response message 2-6, 3-5, 3-10
Rasponse Message Syntax 3-10
Response message terminator 3-10
Response to Bus Management Commands 2-3
Response window

See Exponential window
Results

See Measurement results
Returned format

enabling headers 7-214
rms averaging 7-24
Rmt 7-73

S
Saving files 7-154, 7-157
Scaling
See Display scaling
Screen control
active display 7-175
blanking 7-179
marker readouts 7-176
screen contents 7-177
trace display format 7-178
Selected Device Clear (SDC) 2-4
Self-test 7-15
Sending Commands Over the HP-IB 1-4
Sending Multiple Commands 3-3
Sequential command 2-8
Serial number 7-217
Serial poll 2.5, 5-3, 5-10
Service request 5-1 - 5-3
enabling 7-13
Service Request enable register 5-2 - 5-3
Settling bit 5-15
Short 4-16

Short form 3-4

Sideband markers
carrier frequency 7-113
determining power 7-114
enabling 7-118

enabiing power calculations 7-115
number of sidebands 7-111
sideband increment 7-112

Simple program header 3-8

Sine wave output 7-184 . 7-185

Sourcs

enabling 7-186
owtput level 7-183
output mode 7-185

sine output frequency 7-184

<8P> 3-5
Span

frequency 7-69
fult 7-70

Special Fields in a Record 4-12
Spacial Syntactic Elements 3-5

Spectrum 7-243
SRQ 7-73
See Service request

Stable weighting 7-24-7-28

Start frequency 7-71

Starting & measurement 7-21, 7-75

State
See Instrument state

Status Byte register 5-2-5-3

reading 7-14

Status Byte register set 5.5, 5.8

clearing 5-8

definition of bits 5-8
power-up states 5-8
reading 5-8

summary bit 5-8
writing 5-8

Status clearing 7-4

on powerup 7-11
Status indicators 1-8, 7-73
String data 4-7
Subsystem 3-2
Synchronization 2.8, 5-15
Syntax conventions

Index {continued}

program and response messages 3-5

Systemn controfler 1-3, 1-7, 2-2

System state record 4-27

vii

index {continued)

T

Take Control Talker (TCT) 2-5
Talker 1-3
Terminated program message 3-8
Terminated response message 3-10
Terminator
program message 3-6
response message 3-10
Test
long confidence 7-221
long confidence result 7-221
result 7-222
selftest 7-15
short confidence 7-222
Test log display 7-177
Time 7-220
Time record display 7-243
Time record length 7-204
Tk 7-73
Total Record Reference Count 4-12
Trace data
characterizing 7-226, 7-231
data encoding 7-228
See aiso Dispiay data
domain 7-233
incremeant between points 7-232
naming 7-229
number of points 7-230
overview of trace commands 7-223
raw vs. coordinate transformed data 7-223
special considerations 7-225
transferring in trace file format 7-227
transferring over the HP-IB 7-224 - 7-225
x-axis origin - 7-234
X-axis units 7-236
y-axis units 7-241
y-axis values per point 7-240
Trace display 7-177
format 7-178
Trace file 4-12
recalling 7-138,7-147
saving 7-157, 7-161
Trace grid 7-35
Trace state record 4-28
Trace type
See Coordinates
Trace-dependent marker record 4-30
Transient window
See Uniform window
Transition registers 5-4 - 5.5

viii

Trigger

See also Arm

bus 7-15, 7-246, 7-249
delay 7-245

external 7-249

freerun 7-249

HP-IB 7-15, 7-246, 7-249
input 7-249

level 7-247

mode 7-249

slope 7-248

source 7-249

Triggering

Rdy_for_Trig bit 5-14
Two-channel measurements 7-32
Types of Registersina Set 5-4

8]

Uncalibrated bit 5-17
Uncalibrated data 7-29
Uniform window 7-261
User Status register set 5-2, 5-5 - 56, 5-18
clearing 5-18
command descriptions 7-200 - 7-202
command overview 7-199
definition of bits 5-18
power-up states 5-18
reading 5-18
summary bit 518
writing 5-18
User_Status_Evert bit 5-9

v

Vector averaging 7-24
Vector record 4-31
Verification Program 1-10

Index (continued)

w

*WAL 2-10

Weighting averaged data
exponential weighting 7-19, 7-24 - 7-25
stable weighting 7-24 - 7-25
Windowing function
Exponential 7-258, 7-260
Fiat Top 7-261

Force 7-259, 7-261
Hamning 7-261

selecting 7-260

Uniform 7-261

<WS8P> 3-5

X
X-axis spacing 7-55

Y

Y-axis spacing 7-56

Z

Zoom mode 7-71

Hewlett-Packard Sales and Service Offices

To obtain Servicing information or to order replacement parts, contact the nearest
Hewlett-Packard Sales and Service Office listed in HP Catalog, or contact the nearest
regional office listed below:

In the United States

California

P.O. Box 4230

1421 South Manhattan Avenue
Fullerton 92631

Georgia

P.O. Box 105005

2000 South Park Place
Atlanta 30339

Illinois
5201 Tollview Drive
Rolling Meadows

New Jersey
W. 120 Century Road
Paramus 07652

In Canada

Hewlett-Packard (Canada) Ltd.

17500 South Service Road
Trans-Canada Highway
Kirkland, Quebec H3J 2M5

In France
Hewlett-Packard France
F-91947 Les Ulis Cedex
Orsay

In German Federal Republic
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117

Postfach 560 140

D-6000 Frankfurt 56

In Great Britain
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Wokingham
Berkshire RG11 5AR

In Other European Countries
Switzerland

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan

Case Postale 365

CH-1217 Meyrin

In All Other Locations
Hewlett-Packard Inter-Americas
3155 Porter Drive

Palo Alto, California 94304

